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ABSTRACT: Despite a large number of antiretroviral drugs
targeting HIV-1 protease for inhibition, mutations in this
protein during the course of patient treatment can render them
inefficient. This emerging resistance inspired numerous com-
putational studies of the HIV-1 protease aimed at predicting
the effect of mutations on drug binding in terms of free bind-
ing energy ΔG, as well as in mechanistic terms. In this study,
we analyze ten different protease-inhibitor complexes carrying
major resistance-associated mutations (RAMs) G48V, I50V,
and L90M using molecular dynamics simulations. We demon-
strate that alchemical free energy calculations can consistently
predict the effect of mutations on drug binding. By explicitly
probing different protonation states of the catalytic aspartic
dyad, we reveal the importance of the correct choice of protonation state for the accuracy of the result. We also provide insight
into how different mutations affect drug binding in their specific ways, with the unifying theme of how all of them affect the
crucial drug binding regions of the protease.

■ INTRODUCTION

HIV-1 (human immunodeficiency virus-1, further denoted as
HIV) has caused a global epidemic that affects approximately
37 million people worldwide.1 There is no vaccine or cure
available against HIV, but antiretroviral therapy (ART) is recom-
mended for every infected individual1 to suppress the virus.
Success of ART has led to a near-normal life expectancy of HIV
infected patients.2 Nevertheless, resistance toward drugs remains
a major issue, making it necessary to switch therapy during the
course of treatment of a single patient.1

One of the main targets of ART is the HIV protease, a protein
responsible for cleaving HIV polyproteins during virus
maturation (Figure 1a). HIV protease is a homodimer with
two 99 residues long subunits. The major structural components
of the binding pocket of this protein are the active site at its
bottom, which is followed in sequence by a loop and a short
β-sheet (residues 26−32) that constitute the side of the pocket
together with the so-called 80s loop (residues 79−84) (Figure 1a).
On the top the pocket is covered by the so-called flap region.
In the framework of ART, HIV protease can be inhibited by
protease inhibitors (PIs) (Figure 1b), a class of competitive

inhibitors which are currently recommended as second- and
third-line ART treatment.1 Specific substitutions in 13 different
positions in the protease are considered to be major resistance-
associated mutations (RAMs).3

I50V is a RAM toward protease inhibitors Lopinavir (LPV)4,5

and Darunavir (DRV)6,7 and has been associated with particu-
larly strong resistance to Amprenavir (APV)8−10 and corre-
spondingly to its prodrug Fosamprenavir (FPV). It also has been
suggested to cause resistance toward Indinavir (IDV),9,11 and at
the same time, there is evidence pointing that this mutation has
been associated with sensitivity toward Atazanavir (ATV)12,13

and Tipranavir (TPV).14 I50 is located in the protease flap region
(Figure 1a). This flap is highly flexible, and its opening is thus
thought to control the drug entry to the pocket.15 Another flap
mutation, G48V, as well as a more distant mutation in the
hydrophobic core of the protease, L90M, are RAMs conferring
resistance to the inhibitor Saquinavir (SQV).16−20 These three
mutations were analyzed in this study.
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Other RAMs occurring in the flap of the protease are at the
positions M46, I47, and I54. RAMs at residues V82 and I84 are
placed in the 80s loop, which interacts with the flap region and
was suggested to be involved in supporting the closed confor-
mation of protease.21−23 Other RAM sites located in the binding
pocket shared by the substrate and PIs are D30 and V32, which
are found in the loop with a short β-sheet proximal to the active
site of the protease. Apart from L90, there are several other
locations in the protease hydrophobic core where RAMs occur:
this includes L33 and L76. Finally, N88, found in the same
α-helix as L90, is also a RAM occurrence site. Mutations in all of
the resistance-associated mutation sites, with the exception of
D30, have been linked with simultaneous resistance to multiple
drugs, but the resistance conferred to different drugs is of varying
magnitude; likewise different mutations at the same site do not
confer resistance to the same drug to the same extent.
The change in the free energy of binding, ΔΔG, of inhibitors

to the protease upon mutations in it is directly related to the
change of the affinity of the inhibitor to the mutant protease and
thus to the resistance phenotypes. Hence accurately predicting
the effect of the mutation onΔΔG is highly desirable. Previously,
for estimating ΔΔG in HIV protease complexes, methods such
as Molecular Mechanics/Poisson−Boltzmann surface area
(MM-PBSA) and Molecular Mechanics/Generalized Born
Surface Area (MM/GBSA) have been used due to their compu-
tational efficiency.24−29 However, these studies are limited in
their scope, i.e. in the number of mutations/inhibitors analyzed,
or often have poor correlation to experimental estimates. It has
been shown that the performance of these methods in terms of
reproducing ΔG for ligand binding to protein varies depending
on the system.30−32

In this study, we demonstrate that alchemical free energy
calculations based on molecular dynamics (MD) simulations
allow for an accurate estimation of the impact of mutations on
inhibitor binding for a set of different RAMs in combination with
different inhibitors. The alchemical mutation of residues is
achieved using a nonequilibrium approach,33,34 which has been
demonstrated to yield highly accurate results for amino acid
mutations,35−37 DNA mutations,38,39 and ligand binding free
energies.40 We refer to other work for a more detailed compari-
son between the equilibrium and nonequilibrium free energy
calculations.38,41 We show an overall good correlation of the
estimated and empirical ΔΔG values and emphasize the impor-
tance of the correct choice of the protonation state for the two
aspartic acid residues in the active site. We then analyze how the
effects of the mutation propagate in the protease structure to
affect the inhibitor binding at a site that can be remote from the
mutated amino acid residue. Finally, we show that the dynamics
of residues corresponding to major RAMs is strongly affected
even if the residues are not mutated in a particular viral strain.
Thus, we provide novel and general insights into the develop-
ment of HIV-1 resistance to drugs.

■ METHODS

SystemPreparation.Crystal structures of protease-inhibitor
complexes were obtained from the Protein Data Bank42 (PDB
IDs 1HPV (APV), 1HXB (SQV), 1SDT (IDV), 2BPX (IDV),
2O4K (ATV), 2O4P (TPV), 2O4S (LPV), and 3NU3 (APV)).
Mutation I50V in structures 1HPV, 1SDT, 2BPX, 2O4K, 2O4P,
2O4S, and 3NU3 as well as mutations G48V, L90M, and G48V/
L90M in structure 1HXB were introduced using Modeler43

version 9.12. Additionally in structures 1HPV and 2BPX a

Figure 1. (a) HIV protease structure. The flap region is shown in pale green, the 80s loop is shown in brown, and the active-site proximate loop is shown
in olive. Mutations which are analyzed in this study (red), and the catalytic site residue (cyan) and bound inhibitor (orange) are shown in the sticks
model. (b) Protease inhibitors which are analyzed in this study.
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background mutation Q7K was introduced to match the geno-
type of the reference experimental study. In two cases, we have
analyzed viral strains containing additional mutations L33I, L63I,
C67A, and C95A, for which we used structures 1SDT and 3NU3.
Denoted I50V* in this study, these mutations are introduced to
protect the protease against autocatalysis as well as cysteine thiol
oxidation; however, this practice is not universally applied.44 All
of the aforementioned mutations were introduced in both mono-
mers of the protease in consistency with data from the experi-
mental studies of HIV protease and HIV infection in vivo.45,46

To validate our approach to choosing the active site proton-
ation state, the following structures resolved by neutron crystal-
lography were considered: 2ZYE (with a not used clinically
inhibitor KNI-272), 5E5J (DRV), 5E5K (DRV), and 5T8H
(APV). Hydrogen atoms were assigned to aspartic acid, glutamic
acid, and histidine residues as they were resolved in the corre-
sponding structures, with the exception of 5E5J, where D30 was
assigned a deprotonated state as the deuterium atom in that
structure had 50% occupancy on D30 and K45 residues,47 and
5E5K, where the E34 was assigned a protonated state as this state
was inferred in the original study.47

The Gromacs simulation software package was used to set up
(version 4.6.2), carry out, and analyze the MD simulations
(versions 5.0.2 and 5.1.2).48,49 All crystallographic water and ion
molecules were retained. The pKa of residues was predicted using
Propka,50 and protease was assigned a monoprotonated state on
either D25/D25′, where the prime refers to the second subunit of
the protein, with the exception of structures 3NU3 and 1SDT,
where previously suggested protonation was used,51 and 1HXB,
where similar pKa values (6.42 and 6.47) were predicted for both
active site residues and protonation of D25 was chosen. The
mutant reference protein protonation state was considered to be
the same as that of the wildtype protein. The summary of
protonated aspartic acids for all the complexes is reported in
Table S1. The Amber99SB*-ILDN force field was used for
parametrization of the protease. Chemaxon Calculator52 was
used to determine ligand protonation. Ligands ATV, LPV, and
APVwere assigned a neutral charge, IDV and SQVwere assigned
a +1 charge, and TPV was assigned a −2 charge. Gaussian0953

was used to optimize ligand geometry and calculate electrostatic
potential at the HF/6-31G* level of theory. Partial charges were
assigned by performing a restrained electrostatic potential
(RESP) fit.54 Bonded parameters and atom types were obtained
from the Generalized Amber Force Field (GAFF).55 ACPYPE56

was used for file conversion into the Gromacs format. The
complex was solvated in TIP3P water molecules with 1.4 nm
buffer in each dimension with 0.15 mol/L concentration of Cl
and Na ions57 to neutralize the system.
Equilibrium MD Simulations. Each system was subjected

to energy minimization using the steepest descent algorithm.
A maximum of 5000 steps was performed until a maximum force
of 1000.0 kJ mol−1 nm−1 was achieved. Ten replica 200 ns simu-
lations for each complex were performed at 300 K with a time
constant of 0.1 ps using the velocity-rescaling thermostat,58 at a
constant pressure of 1 atm with a time constant of 4 ps using the
Parrinello−Rahman barostat.59 Electrostatic interactions were
calculated at every step with the particle-mesh Ewald method,60

and short-range repulsive and attractive dispersion interactions
were simultaneously described by a Lennard-Jones potential with
a cutoff of 1.2 nm. All bonds were constrained using the LINCS
algorithm,61 and a time step of 2 fs was adopted. Simulated
annealing in length of 1 ns was performed for a mutant structure
of 2BPX in both protonation states as well as 5E5J when

protonated on D25′ to avoid too close of contact between atoms
before equilibrium simulation. For all of the analyses that
followed, the first 20 ns of the simulations were considered to be
a part of the system equilibration process and thus discarded,
with the exception of free energy calculations, where the first
10 ns were discarded.

Free Energy Calculations. The protocol for free energy
calculations was adjusted from the nonequilibrium simulation
approach used in assessing changes in protein thermal stabilities
and protein−protein interactions upon amino acid mutation.36

From each of the equilibrium simulations described above, trajec-
tory frames were extracted equidistantly in time every 10 ns. For
every snapshot hybrid structures and topologies were generated
using the pmx62 framework for all of the residues to be mutated.
Subsequently, short 20 ps simulations were performed to
equilibrate velocities. Finally, alchemical transitions were carried
out in 50 ps. During these transitions mutations in both of the
monomers were introduced simultaneously, resulting in four
mutations for the double mutant G48V/L90M and two muta-
tions for the rest of the complexes. The simulation parameters for
the 20 ps equilibration and alchemical transitions were identical
to those used in the 200 ns equilibrium simulations. During the
transitions, nonbonded interactions were soft-cored.63 The
Crooks Fluctuation Theorem34 was used to relate the obtained
work distributions to the free energy values by employing a
maximum likelihood estimator.64 The error estimates were
obtained by the bootstrap approach.

Partial Least-Squares Regression. Partial least-squares
regression was performed using the functional mode analysis
tool.65 The following sets of input atoms (excluding hydrogens)
were used for the model: backbone, ligand, protein, and side
chain. Constants 0 and 1 have been used as response variables for
trajectories corresponding to mutant and wildtype protein simu-
lations, respectively.
Cross-validation for each mutation and drug combination was

done as follows: all trajectories for wildtype and mutant com-
plexes were concatenated, superimposed to minimize the
variance over the ensemble,66 and divided into five equal parts.
In each iteration, a model was trained on four parts of labeled
input in equal parts from wildtype and mutant simulations, after
which it was used to make prediction for the last part. The
Pearson correlation between the actual signal and prediction was
used to measure the prediction quality. The number of compo-
nents in the final model has been selected using the so-called
“elbow method”, where model complexity is increased by
boosting the number of components until adding further compo-
nents only marginally improves the quality of prediction.67

Mutual Information.Mutual information I between pairs of
backbone ϕ and ψ as well as side chain χ dihedral angles of
residues was estimated from their individual and joint entropies
using the MutInf68 method. Twenty-four bins were used to get
the discrete distributions of the dihedral angles. Dihedrals from
10 simulations for each case were kept separate for later
evaluation of Iind for pairs of torsion angles from independent
simulations. Monte Carlo sampling with adaptive partitioning of
all torsion angle pairs was used to obtain a background
distribution of I, and only those I entries, which have a p-value
of at most 0.01 according to this distribution, were retained. False
positives were removed based on P(I < E[Iind]) criteria, namely
that the true mutual information is lower than expected for
independent torsion angles, Iind. Iind, or the excess mutual
information, is then subtracted from the actual I so that
incomplete sampling resulting from memory effects in the
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simulations can be corrected for. Mutual information for any two
residues, Ires, is then estimated as the sum of the mutual infor-
mation between pairs of those residues’ torsion angles. For more
details on the methods described refer to the original paper.68

Bootstrap sets were created for each set, by randomly selecting
with replacement n frames from a simulation of length n. This
was done for each of the 10 simulation runs while preserving the
same order across the different dihedral angles and simulation
runs, repeating this procedure 10 times. For each resulting
bootstrap set, I was estimated. The mean and standard deviation
of Ires from the 10 bootstrap sets, μIres and sdIres, were then

calculated. When comparing the actual residue pairs, IresWT
and

IresMUT
, for wildtype and mutant simulations for some complex,

only those cases were retained, where

μ μ| − | > +
sd sd

10 10I I

I I
2 2

resMUT resWT

resMUT resWT

(1)

from the bootstrapped sets. As a final filter, residues whose
differences in eq 1 were smaller than or equal to 0.3 kT were not
considered for further analysis.

■ RESULTS
Estimation of the Lowest Free Energy Protonation

State of the Active Site. The catalytic site of aspartyl proteases
comprises two aspartic acid residues, of which only one is
protonated in its active form.69 In HIV protease these residues
are D25 andD25′ from the two subunits of the dimer that lie next
to each other in the ligand binding pocket (Figure 1a). The three-
dimensional structures of HIV protease considered in this study
have been obtained by X-ray crystallography, without hydrogen
atoms coordinates resolved. Hence it is unknown which of the
catalytic aspartate residues is protonated in each case. The apo
form of the enzyme is symmetric, thus switching the protonation
state of the two aspartic acid residues results in an identical dimer.
On the other hand, protease inhibitors considered here are not
symmetric molecules, and upon their binding to the protease, the
resulting complex is no longer symmetric. Previous studies have
suggested that the protonation state of the protease depends on
the inhibitor bound.70−75 For a complex with an experimental
inhibitor including a diol group, a diprotonated HIV protease at
its active site has been suggested,76 but such a state seems to be
rather an exception.77

Here we consider both monoprotonated active site states in
order to find the complex with the lowest free energy. In each
case studied, we conducted MD simulations in both alternative
protonation states (DH25/D25′ and D25/DH25′) for the
wildtype and the mutant. The reference protonation state was
identified with Propka,50 with the exception of complexes
analyzed for I50V*, where previously suggested protonation was
used.51 Further we estimated the difference of the free binding
energy in the wildtype and the mutant complexes between the
two alternative protonation states,ΔΔGWT

prot andΔΔGMUT
prot (Table 1,

Figure 2). Large differences in the free binding energy between the
two protonation state alternatives can be observed in several cases,
e.g. −2.49 kcal/mol for IDV bound to the wildtype protease.
Interestingly, the reference protonation state corresponds to the
lowest free energy complex only in 44% (8 out of 18) of the cases.
For some inhibitor/mutant combinations, the lowest free energy
complex for the mutant has the opposite protonation state
compared to the wildtype, i.e., mutation affects the protonation
probabilities upon inhibitor binding. Concomitantly, the inter-
actions in the vicinity of the active site differ between the
wildtype and the mutant enzymes, as demonstrated by the inter-
action energy analysis below. Supporting our assertion, an experi-
mental structure of HIV-1 protease in complex with APV
resolved with X-ray/neutron crystallography82 had the same
sequence as the wildtype in our analysis of I50V* mutation. The
hydrogen atoms on its aspartic dyad were resolved in the study,
and the protonated aspartic acid residue matched the lowest free
energy prediction for both complexes with APV in our study.
To further test the accuracy of our method to predict the
energetically favorable active site protonation state, we searched
the Protein Data Bank for structures of HIV protease with
experimentally resolved hydrogen atoms. This resulted in a data
set of four additional protease complexes, including one with
APV, two complexes with DRV resolved under different pH
conditions, and one with an experimental inhibitor KNI-272.
In all cases, the free energy change ΔΔGprot of switching the
proton from active site aspartic acid, which was resolved experi-
mentally, to the active site aspartic acid on the opposite mono-
mer was estimated to be energetically unfavorable (Table S2).
This included the two complexes with DRV, where the only
manifestation of differences in experimental pH values in our
simulations was in terms of different protonation states of several
residues. Here we were able to correctly predict the opposite
active site protonation states of these complexes.

Table 1. Experimental and Estimated ΔΔG Values in kcal/mol

drug mutation ΔΔGexp ΔΔGcalc ΔΔGWT
prot ΔΔGMUT

prot ΔΔGtotal

ATV I50V 2.7a 0.02 ± 0.19 −1.80 ± 0.16 −1.16 ± 0.2 0.34 ± 0.32

LPV I50V 2.6a 1.39 ± 0.15 −0.81 ± 0.26 −0.1 ± 0.48 1.74 ± 0.57

TPV I50V 2.1a 0.9 ± 0.18 1.04 ± 0.3 −0.56 ± 0.21 0.1 ± 0.41

APV I50V 2.5a 1.16 ± 0.17 −1.24 ± 0.17 −0.81 ± 0.27 1.38 ± 0.37

IDV I50V 1.9a 0.82 ± 0.12 0.91 ± 0.29 0.73 ± 0.27 0.73 ± 0.41

APV I50V* 2.03b 2.11 ± 0.15 1.47 ± 0.35 −0.33 ± 0.45 1.21 ± 0.58

IDV I50V* 2.33c 0 ± 0.1 −2.49 ± 0.45 −1.82 ± 0.76 0.32 ± 0.89

SQV G48V 2.78d 3 ± 0.58 0.67 ± 0.15 0 ± 0.24 2.66 ± 0.65

SQV L90M 1.60d −0.09 ± 0.24 0.67 ± 0.15 1.03 ± 0.18 0.09 ± 0.33

SQV G48V/L90M 4.03d 5.32 ± 0.74 0.67 ± 0.15 2.1 ± 0.21 6.03 ± 0.79
aΔΔGexp taken from Muzammil et al.44 bKi values were taken from Shen et al.78 and ΔGexp was calculated using ΔGexp = −RT ln Ki.

cKi values were
taken from Liu et al.79 and ΔGexp was calculated using ΔGexp = −RT ln Ki.

dKi values were taken from Ermolieff et al.80 and Maschera et al.81 ΔGexp1

and ΔGexp2 were calculated using ΔGexpj = −RTj ln Kij and ΔGexp at 300 K temperature and then calculated by linear interpolation between ΔGexp1

and ΔGexp2.
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Taking into account the alternative protonation states of the
active site, we measured the total difference of the free binding
energy between the wildtype and the mutant complex as

β β
ΔΔ = ΔΔ + + − +β β− Δ − ΔG G e e1

ln(1 )
1

ln(1 )total calc
G GWT

prot
MUT
prot

(2)

where β is the inverse of the product of the gas constant and the
temperature. Considering the alternative, protonation states
result in correlation between ΔΔGexp and ΔΔGtotal of 0.89
(average unsigned error 1.4 kcal/mol) (Figure 3).

It must be noted, that for many of the complexes studied, there
is a compensation of the changes of the free binding energy
caused by switching the active site protonation state between the
complexes. That is, if simulation of a wildtype protein in the
reference state was in an energetically unfavorable protonation
state, the corresponding mutant protein also had a tendency to
be in an energetically unfavorable protonation state, which means
they compensated each other to some degree in the overall
estimate of ΔΔG (Figure S1a). This results in a high degree of

correlation between ΔΔGtotal and ΔΔGcalc (Figure S1b). Thus,
we wanted to evaluate how accurate can one expect to be in
estimating ΔΔG if one were to choose randomly, which of the
active site residues is protonated in both wildtype and mutant
protein. For that purpose we probed all unique combinations of
ΔΔG estimates for the set of all ten complexes, where ΔΔG was
a result of any possible linear combination of ΔΔGcalc with
ΔΔGWT

prot and ΔΔGMUT
prot . For each of these sets we calculated its

correlation r with ΔΔGexp, which resulted in 410 data points
(Figure S1c). Correlation between ΔΔGexp and ΔΔGtotal
(r = 0.89) was higher than with the mean ΔΔG from all possible
combinations (r = 0.81), with ΔΔGcalc (r = 0.79) or ΔΔGpropka
(r = 0.81) (the latter corresponded to the evaluation of the most
likely protonation state as predicted by Propka separately for
wildtype and mutant protease complexes). This confirms the
benefit of combining simulations of HIV protease in both active
site protonation states for best accuracy in estimating the effect of
mutation on drug binding free energy.

Energetic Contributions of Individual Residues. To
elucidate energetic interactions of individual residues with the
inhibitor, for each of the residues we measured the contributions
of Lennard-Jones and short-range electrostatic terms and
compared them between the wildtype and the mutant complexes
(Figure 2). In all cases and further throughout the analyses, we
considered only the complexes with the protonation states
corresponding to the lowest free energy.
For the inhibitors ATV, LPV, TPV, and APV, the mutation

I50V leads to an increase in the interaction energy between the
inhibitor and the protein (Figure 4), which may account for the
observed resistance in this phenotype. The experimental mea-
surements from isothermal titration calorimetry (ITC) for ATV,
LPV, and APV reported an ethalpic ΔΔH penalty, which also
includes the direct ligand-protein interactions, caused by I50V
mutation.44 This was not the case for TPV, where a reduction in
ΔΔH was reported for the same mutation.44 Mutation A71V,
which tends to appear together with I50V,12 is known to
compensate for the loss of viral fitness due to primary drug
resistance-associated mutation.83 An ITC study of I50V+A71V
double mutant12 suggested an increase in affinity toward ATV as
a result of an increase in entropy which compensated the increase
in enthalpy. The same compensatory effect in that study was
observed for APV but with the overall result of a binding penalty
for the drug. In our study the mutation I50V* decreased the

Figure 2. Thermodynamic cycles for ΔΔG estimation. The first cycle estimates the mutation effect on ligand binding, the second cycle estimates the
effect of switching the proton between D25/D25′ for the wildype protein, and the third cycle switches correspondingly for the mutant protein. Only the
binding pocket is shown in the figures; the wildtype protein is shown in gray, the mutant is shown in blue, and the inhibitor is shown in orange. In the
second and third cycles the inhibitor is set to semitransparent for the sake of clarity, and the proton in question for D25/D25′ is shown as a black sphere.

Figure 3. Calculated total estimate and experimental measurement of
free binding energy binding change upon mutation.
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direct interaction energy between the protein and APV. This was
mostly the result of a stronger interaction with the active site
residues due to a difference in protonation state preference
between the wildtype and mutant. To test whether the addition
of mutation A71V results in a different thermodynamic profile,
we performed additional simulations of a 50V+71V mutant with
the ATV and APV inhibitors. The resulting ΔΔGtotal, 0.91 and
1.27 kcal/mol, respectively, was close to the original estimates for
single mutation I50V for these inhibitors, and it exhibited
comparable direct protein-drug interaction profiles (Figure S2).
Thus, we could not reproduce the compensating effect of the
double mutation in our simulation. Similarly to APV, I50V and
I50V* showed differing protein interaction profiles with IDV,
with the former exhibiting stronger direct interactions and the
latter having a small penalizing effect on interactions after
mutation (Figures 4 and S2). In combination with SQV,
mutations G48V, L90M, and G48V/L90M had an unfavorable
effect on direct inhibitor-protein interaction energy, albeit to a
smaller extent for the single-site mutations (Figure 4).
For all of the complexes with the mutation I50V analyzed, if

the substitution had any notable effect on the direct interaction
energy between protease and inhibitor, such an effect extended
beyond themutated residue itself. The largest contributions were
observed for residues in the flap region, i.e. near themutation site.
Other proximal affected residues were in the 80s loop, as well as
residues around the active site (Figure 4). Given such a wide
distribution of mutation effects, we were interested whether this
is related to structural changes in the protease or a different pose
of the inhibitor. Partial least-squares (PLS) regression based
functional mode analysis,65 a supervised machine learning
technique, allows for correlation of Cartesian input from MD
trajectories to a desired functional property. In our case we

investigated whether the major collective motions discriminate
wildtype and mutant complexes: using Cartesian coordinates as
an input, we aimed to predict whether a trajectory was generated
by a wildtype or mutant protein. We applied this technique with
different input features: coordinates of heavy atoms of the
backbone, ligand, protein, and side chain, to create statistical
models. Of these, models with protein backbone input proved to
be the most predictive, and models with ligand input proved to
be the least predictive in the cross-validation on average (data not
shown). Models trained on protein backbone atoms proved to be
capable of making a satisfactory distinction for all complexes
except IDV in the context of I50V* and complexes with SQV in
the context of the G48V or L90M mutations (Figure S3).
Mapping the regions of the backbone contributing the most to
these PLS models confirmed the flap as the region that is the
most important for distinguishing the corresponding trajectories
of wildtype and mutant complexes (Figures 5 and S4). The 80s
loop is also prone to assume different conformations between
wildtype and mutant complexes, as well as the loop with the
active site, particularly so for cases in which the energetically
favorable protonation state differs between wildtype and mutant
proteins (Figures 5a and 5b).

Changes in the Correlated Motion of Amino Acid
Residues. The analyzed mutations seem to have an effect on
direct protein-inhibitor interaction as well as protein backbone
rearrangements outside of the immediate mutation site.
Certainly, this must be the case for RAMs which are not in
direct contact with the inhibitor, such as the mutation L90M.
However, we did not observe any consistent effect of this mutation
in terms of changes in the protein backbone and just a minor effect
in protein-inhibitor interaction. To gain insight into other
nonlocal effects of the mutations, we inspected differences in the

Figure 4. Energy differences of nonbonded interaction between protein and inhibitor in wildtype and mutant complexes. Residues, for which the
difference (EMUT−EWT) between the wildtype and the mutant complexes is higher than the propagated error (SE) and its absolute value is higher than
0.1 kcal/mol, are represented as a colored circle, where the color represents the relative interaction energy and the size of the circle relates inversely to the
standard error of the estimate.
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correlated motion of all pairs of residues between the wildtype
and the mutant protease-inhibitor complexes. Since these
correlations are not necessarily linear, we chose to evaluate the
pairwise mutual information based on the distributions of
dihedral angles from molecular dynamics simulations,68 a
measure that depends both on individual Shannon entropies of
the residues and their joint entropy.
First we inspected in which protein regions correlations are

affected most by ligand binding. For this purpose we compared
the residues’mutual information between apo and holo wildtype
proteins (Figure S5). The flexible flap region for all of the
complexes is affected to the largest extent. Correlations in the
active site loop of the protease as well as the 80s loop also seem to
be affected in many cases, particularly so upon binding of TPV
and SQV. These results are expected, since the flap and 80s loop
regions are suggested to be involved in ligand binding,15,21−23

while the active site D25/D25′ typically makes hydrogen bonds
with the inhibitor upon its binding, thus likely affecting its
interactions with other residues in the protein.
Next we estimated the mutual information networks for holo

protein complexes with mutations and compared them with
wildtype holo protein complexes to evaluate how the mutation
affects residues’ correlated motions in the protein (Figure 6).
We wanted to investigate what is the overlap between such pairs
with those whose correlations were affected by ligand binding in
the wildtype complexes. To measure the overlap between these
sets, we used the Jaccard index, which is the ratio of the size of the
intersection of the two sets and the size of their union. A Jaccard
index close to 1 indicates that there is a high overlap between the
sets of such pairs, whereas an index close to 0 would indicate that
different residue pairs show correlated movements in the
processes related to binding and propagation of mutation effects.
An average Jaccard index value of 0.28 indicates that overall
similar residue pairs are involved in these processes, but some
differences exist (Table S3). In contrast, when choosing random
pairs of sets of the same respective sizes as in the original data, an
average Jaccard index value is 0.003. More generally, upon closer
inspection we observe that while the identity of the residues in
these pairs may differ, they are located in the same protein
regions: the flaps, the 80s loop, and the active site loop (Figure 6
and Figure S5).
Finally we analyzed in detail the effect of mutations on the

protein mutual information network. For the mutation L90M,
the correlated motion of the mutation site with the active site
residues D25/D25′ is changed. The active site residues directly
interact with the inhibitor (Figure 6a), suggesting a path by
which the mutation L90M, which is not located in the inhibitor

binding pocket, affects its binding. The changed interaction pat-
tern between L90M and the active site residues has been observed
previously in crystal structures84 and MD simulations.85 It has
also been noticed that the side chain I84/I84′, which is typically
in direct contact with D25/D25′, is oriented differently upon the
mutation L90M,85 suggesting changes in the binding pocket of
the protease. Indeed, in our analysis, I84 demonstrates significant
differences in the correlated motion with multiple residues in the
binding pocket, as reflected by high values of the mutual infor-
mation, for all three G48V, G48V/L90M, and L90M mutants in
complex with SQV. These differences are possibly the result of
different χ angle distributions of I84 between wildtype and
mutant complexes (Figure S6). We also observe strong dif-
ferences in mutual information involving the flap region of the
complexes with SQV (Figures 6a-6c) and to a smaller extent in
other complexes (Figures 6d−6j). Suspecting that such large
differences are related to large structural rearrangements in
the protease upon mutation, we performed a principal com-
ponent analysis on the backbone of the complexes involving
SQV. The motion along the first principal component, which
accounts for most of the structural variance, indeed showed the
largest shifts in the 80s loop and the flap region (Figure S7).

■ DISCUSSION

In this study, we have demonstrated the applicability of alchemical
free energy calculations for an accurate estimation of the change of
free binding energy, ΔΔG, for different mutations in the HIV-1
protease and different inhibitors. Taking into account alternative
protonation states helped to achieve an improvement in corre-
lation with experimental ΔΔG estimates, compared to choosing
one state based on empirical pKa calculations with Propka.50

A recent study of protonation of aspartic proteases, including
HIV-1 protease, also suggested inaccuracy of prediction of the
protonation state using Propka.86 Although the importance of
choosing the correct protonation state has been noted in multi-
ple studies,29,70−75 predictions based on empirical pKa estimates,
as well as setting the protonation state based on a previous
suggestion for the protein-inhibitor complex, regardless of the
specific sequence context, still remain standard practice. We sug-
gest that explicit probing of both protonation states is needed to
reproduce the correct ensemble. We observe that choosing an
alternative protonation state can contribute more than 2 kcal/mol
to the change in free energy of the system. We also show that a
point mutation can change the preferred protonation state of the
protease, contrary to the often held assumption.73

The effect of the I50V* mutation on the binding free energy
of APV and IDV has recently been addressed by Duan et al.51

Figure 5. Interpolation between the extremes of the PLS models for the corresponding complexes. Blue-to-magenta bands correspond to the
interpolation along the mode which relates the true label of simulation, wildtype or mutant, to the underlying differences in protein motions.
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using the MM/PBSA approach. In their study, the authors could
not reproduce the experimental values when sampling from 20 ns
long MD simulations using the AMBER0387 force field
(Table S4). In the present study, we obtained correct trends in
free energy changes for these cases and could also provide a
hypothesis for the mechanism of resistance. To compare our data
with the results of Duan et al., we used snapshots from the first
20 ns of the trajectories to calculate ΔΔGtotal for all of our
complexes, which resulted in a correlation of −0.11. Hence
we can suggest that insufficient sampling might have been one
of the issues contributing to the inaccuracies observed by
Duan et al.
An unfavorable effect of mutation on inhibitor binding has

been correctly predicted for all of the cases analyzed. Of these,
our predictions of ΔΔG were less accurate for complexes
involving ATV and TPV for the mutation I50V, as well as to a
lesser extent for IDV for the mutation I50V and for SQV in
combination with the mutation L90M, underestimating the
complex destabilization of mutation. The mutation I50V is
however not one of the major resistance associated mutations for
either ATV, TPV, or IDV inhibitors.
In our study, the mutation I50V directly affects interaction

energy between protein and inhibitor, and the resulting impact
on the enthalpy can be unfavorable (APV, ATV, LPV, and TPV)
and favorable (IDV). In contrast to complexes involving the
mutation I50V, we do not observe large effect on direct

interactions between the protease and SQV for single-site
mutations. These mutations as well as their combination,
however, perturb the correlated motions in the protein, both in
the mutation site and beyond: this seems to be caused to a large
extent by the movement of the protease flap region as well as the
80s loop, which is particularly evident for simulations of the
complexes with the resistance-causing mutations.
The resistance-associated mutations, which were studied in

this work, showed a tendency to affect the same regions in terms
of backbone arrangements, residues interactions with inhibitor,
or correlated motions with other residues. These regions, such as
the protease flap, 80s loop, and loop proximal to the active site,
harbor other sites in which mutations are associated with
resistance toward protease inhibitors. In fact, major RAM sites
are over-represented among residues whose interaction or
dynamics is changed in our simulation upon mutation, particu-
larly in cases when the modeled mutation is a major RAM itself
(Table 2). This hints at a possible relationship between residues
in the protease, mutations of which are associated with viral resis-
tance toward the drug, and suggests their collective involvement
in the process of drug binding.

■ CONCLUSIONS
In summary, we have analyzed a data set of ten complexes of
HIV-1 protease with inhibitors to assess the effect of resistance-
associated mutations on the energetic properties of the

Figure 6.Mutual information mapped onto the protease structure. Cylinders connecting residues represent differences in mutual information between
those residues in mutant and wildtype simulations, with the width of the cylinder proportional to the difference and red indicating higher correlation in
mutant and blue indicating higher correlation in the wildtype protein. This corresponds to the degree to which residue pairs exhibit differences in the
correlation of their motions.

Table 2. p-Values for Fisher’s Exact Test for over-Representation in Holo Protein of RAM Sites Amongst Residues Showing
Different Correlations with Other Residues upon Mutation or Differences in Direct Interaction Energies with Inhibitora

drug and mutation
combination

ATV
I50V

LPV
I50V

TPV
I50V

APV
I50V

IDV
I50V

APV
I50V*

IDV
I50V*

SQV
G48V

SQV
G48V/L90M

SQV
L90M

p-value 0.12 0.05 0.02 2 × 10−3 0.2 1 × 10−3 0.07 0.06 0.05 3 × 10−5

aThe absolute value is larger than 0.1 kcal/mol.
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complexes and the differences in inhibitor binding. Our
predictions of the effect of those mutations on the free binding
energy of the ligand binding correlates well with the experimental
measurements for these mutations. We observed that explicit
probing of alternative protonation states of the active site of the
protease contributes to this accuracy, in addition to enabling us
to select the most likely protonation state of the complex.
In terms of mechanisms as to how mutation contributed to
resistance, we witnessed that in most cases mutation has a
negative effect on direct protein-inhibitor interactions. More
generally, we found that for all the investigated protein−ligand
complexes the mutations consistently affected the same regions
in the HIV protease: the flaps, 80s loop, and active site loop.
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