
Chapter 5
Normal Modes and Essential Dynamics

Steven Hayward and Bert L. de Groot

Summary Normal mode analysis and essential dynamics analysis are powerful
methods used for the analysis of collective motions in biomolecules. Their appli-
cation has led to an appreciation of the importance of protein dynamics in function
and the relationship between structure and dynamical behavior. In this chapter, the
methods and their implementation are introduced and recent developments such as
elastic networks and advanced sampling techniques are described.
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1 Introduction

1.1 Standard Normal Mode Analysis

Normal mode analysis (NMA) is one of the major simulation techniques used
to probe the large-scale, shape-changing motions in biological molecules [1–3].
Although it has connection to the experimental techniques of infrared and Raman
spectroscopy, its recent application has been to predict functional motions in pro-
teins or other biological molecules. Functional motions are those that relate to func-
tion and are often the consequence of binding other molecules. In NMA studies, it
is always assumed that the normal modes with the largest fluctuation (lowest fre-
quency modes) are the ones that are functionally relevant, because, like function,
they exist by evolutionary design rather than by chance. The ultimate justification
for this assumption must come from comparisons with experimental data and indeed
studies that compare predictions of an NMA with transitions derived from multiple
x-ray conformers do suggest that the low-frequency normal modes are often func-
tionally relevant.
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NMA is a harmonic analysis. In its purest form, it uses exactly the same force
fields as used in molecular dynamics simulations. In that sense, it is accurate. How-
ever, the underlying assumption that the conformational energy surface at an energy
minimum can be approximated by a parabola over the range of thermal fluctuations
is known not to be correct at physiological temperatures. There exists abundant ev-
idence, both experimental [4] and computational [5], that the harmonic approxima-
tion breaks down spectacularly for proteins at physiological temperatures, where, far
from performing harmonic motion in a single energy minimum, the state point visits
multiple minima crossing energy barriers of various heights. Thus, when perform-
ing NMA, one has to be aware of this assumption and its limitations at functioning
temperatures.

A standard NMA requires a set of coordinates, a force field describing the in-
teractions between constituent atoms, and software to perform the required calcu-
lations. The performance of an NMA in Cartesian coordinate space requires three
main calculation steps: 1) minimization of the conformational potential energy as
a function of the atomic Cartesian coordinates; 2) the calculation of the so-called
“Hessian” matrix, which is the matrix of second derivatives of the potential energy
with respect to the mass-weighted atomic coordinates; and 3) the diagonalization of
the Hessian matrix. This final step yields eigenvalues and eigenvectors (the “normal
modes”). Each of these three steps can be computationally demanding, depending
on the size of the molecule. Usually, the first and final steps are the bottlenecks.
Normally, energy minimization is demanding of CPU time and diagonalization is
demanding of CPU time and memory because it involves the diagonalization of a
3N × 3N matrix, where N is the number of atoms in the molecule. We have called
this NMA “standard” NMA to distinguish it from the elastic network model NMA.

1.2 Elastic Network Models

Because of the computational difficulties of standard NMA, the current popularity
of the elastic network models is not surprising. This is still an NMA, but the protein
model is dramatically simplified. Tirion first introduced it into protein research [6].
As the name suggests, the atoms are connected by a network of elastic connections.
The method has two main advantages over the standard NMA. The first is that there
is no need for energy minimization because the distances of all of the elastic connec-
tions are taken to be at their minimum energy length. Second, the diagonalization
task is greatly reduced compared with the standard NMA method because the num-
ber of atoms is reduced from the total number of atoms to the number of residues,
if one uses only Cα atoms, as is common practice. This leads to a tenfold reduction
in the number of atoms. Unlike standard NMA, elastic network models have two
parameters to be set. One is the force or spring constant, normally denoted as γ or
C, and the other is a cut-off distance, denoted Rc.

A pertinent question is whether the method is any less accurate than the standard
NMA. Tirion showed that there is a respectable degree of correspondence between
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the two methods [6]. Given the drastic assumptions that are inherent in the standard
NMA, the small difference between the results from these two methods is probably
unimportant relative to differences between standard NMA and reality. Comparisons
between movements in the low-frequency modes derived from elastic network mod-
els of 20 proteins with movements derived from pairs of x-ray structures [7] suggest
the same level of moderate correspondence seen in similar studies using standard
NMA. This, together with the relatively low computational cost of elastic network
models, explains their current popularity in comparison with standard NMA.

1.3 Essential Dynamics and Principal Components Analysis

Because of the complexity of biomolecular systems, molecular dynamics simula-
tions can be notoriously hard to analyze, rendering it difficult to grasp the motions
of interest, or to uncover functional mechanisms. A principal components analy-
sis (PCA) [8–10] often alleviates this problem. Similar to NMA, PCA rests on the
assumption that the major collective modes of fluctuation dominate the functional
dynamics. Interestingly, it has been found that the vast majority of protein dynamics
can be described by a surprisingly low number of collective degrees of freedom [9].
For the analysis of protein molecular dynamics simulations, this approach has the
advantage that the dynamics along the individual modes can be inspected and visu-
alized separately, thereby allowing one to filter the main modes of collective motion
from more local fluctuations. Because these principal modes of motion could, in
many cases, be linked to protein function, the dynamics in the low-dimensional
subspace spanned by these modes was termed “essential dynamics” [9], to reflect
the notion that these are the modes essential for function. The subspace spanned by
the major modes of collective fluctuations is accordingly often referred to as “es-
sential subspace.” The fact that only a small subset of the total number of degrees
of freedom dominates the molecular dynamics of biomolecules not only aids the
analysis and interpretation of molecular dynamics trajectories, but also opens the
way to enhanced sampling algorithms that search the essential subspace in either a
systematic or exploratory fashion [11–14].

In contrast to NMA, PCA of a molecular dynamics simulation trajectory does not
rest on the assumption of a harmonic potential. In fact, PCA can be used to study the
degree of anharmonicity in the molecular dynamics of a simulated system. For pro-
teins, it was shown that, at physiological temperatures, especially the major modes
of collective fluctuation are dominated by anharmonic fluctuations [9, 15]. Over-
all, protein dynamics at physiological temperatures has been described as diffusion
among multiple minima [16–18]; on short timescales, the dynamics are dominated
by fluctuations within a local minimum (that can be approximated well by a sys-
tem’s local normal modes), whereas, on longer timescales, the large fluctuations are
dominated by a largely anharmonic diffusion between multiple wells.

In NMA the modes of greatest fluctuation are those with the lowest frequencies.
As in PCA, no assumptions are implied regarding the harmonicity of the motion,
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modes are usually sorted according to variance rather than frequency. Nevertheless,
the largest-amplitude modes of a PCA usually also represent the slowest dynamical
transitions.

2 Theory

2.1 Standard NMA

NMA is usually performed in a vacuum, where the potential energy of a biomole-
cule is a complex function of its 3N coordinates, N being the number of atoms.
This function is normally written in terms of its bonded and nonbonded energy
terms. It is usual to use Cartesian coordinates [3], although dihedral angles have
been used [1, 19, 20]. The basic idea is that, at a minimum, the potential energy
function V can be expanded in a Taylor series in terms of the mass-weighted coor-
dinates qi = √

mi�xi, where �xi is the displacement of the ith coordinate from the
energy minimum and mi is that mass of the corresponding atom. If the expansion is
terminated at the quadratic level, then because the linear term is zero at an energy
minimum:

V = 1
2

3N∑

i,j=1

∂2V
∂qi∂qj

∣
∣
∣
∣
∣
0

qiqj. (1)

Thus, the energy surface is approximated by a parabola characterized by the sec-
ond derivatives evaluated at the energy at the minimum. The basic, but false, as-
sumption of NMA of biomolecules at physiological temperatures is that fluctuations
still occur within this parabolic energy surface. It is known, however, that, at these
temperatures, the state point moves on a complex energy surface with multiple min-
ima, crossing energy barriers of various heights [4]. The second derivatives in Eq. 1
can be written in a matrix, which is often called the “Hessian,” F. Determination of
its eigenvalues and eigenvectors (equivalent to diagonalization) implies:

Fwj = ω2
j wj, (2)

where wj is the jth eigenvector and ω2
j is the jth eigenvalue. There are 3N such eigen-

vector equations. Each eigenvector specifies a normal mode coordinate through:

Qj =
3N∑

i=1

wij qi. (3)

The sum is over the elements of wj. Note that |wj| = 1. It can be shown that
these normal mode coordinates oscillate harmonically and independently of each
other each with the angular frequency, ωj:

Qj = Aj cos(ωjt + εj). (4)
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Here, Aj is the amplitude and εj is the phase. These normal mode coordinates are
collective variables because they are linear combinations of the atom-based Carte-
sian coordinates, as shown in Eq. 3. If a single normal mode j is activated, then:

�xij = wij√
mi

Aj cos(ω j t + ε j ), (5)

which means that, in the jth mode, the relative displacements of the Cartesian co-
ordinates are specified by the elements of wj. Each normal mode then specifies a
pattern of atomic displacement. For example, in a multidomain protein, this pattern
of displacement could indicate the relative movement of two domains. Figure 1b
shows an example. A more thorough introduction to the theory and its application
to biomolecules can be found elsewhere [21].

It can be shown that the lower the frequency, the larger the fluctuation of the
corresponding normal mode coordinate [22]. It is common to compare the lowest
frequency modes with functional modes derived from, e.g., a pair of x-ray structures,
one bound to a functional ligand and the other unbound. The overlap with the jth
mode can be defined as [23]:

Oj =

3N∑

i=1
�xij�xexp

i
√
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i=1

(
�xij

)2

√
3N∑

i=1

(
�xexp

i
)2

. (6)

Fig. 1 (a) Elastic network model of the homodimeric molecule liver alcohol dehydrogenase. A
cut-off distance, Rc, of 7 Å was used. (b) Cα trace of liver alcohol dehydrogenase, with each short
line showing the displacement of the Cα in the first normal mode derived from the elastic network
model shown in (a)
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2.2 Elastic Network Models

There is, in fact, no essential difference between the elastic network NMA and the
standard NMA other than the force field. In the case of the elastic network, the
Hessian would be derived from the following potential energy function [6]:

V = γ
2

∑

∣
∣
∣r0

ij

∣
∣
∣<RC

(
rij − r0

ij

)2
, (7)

where rij is the distance between atoms i and j and r0
ij is the distance between the

atoms in the reference structure, e.g., the crystallographic structure. This summation
is only performed over atoms less than a cut-off distance Rc, and γ is the spring,
or force constant for the elastic bond between the atoms and is the same for all
atoms pairs (see Fig. 1a). The energy function in Eq. 7 seems to be the most popular,
although other types of functions can be used. The network corresponding to the
energy function of Eq. 7 is sometimes referred to as the anharmonic network model
[24]. A Gaussian network model has a different energy function, which results in
modes without any directional information [24,25] and will not be considered here.
Once the function of Eq. 7 has been calculated, the procedure is exactly the same
as for the standard NMA, namely, the Hessian is calculated and its eigenvalues and
eigenvectors are determined. Whereas the standard NMA must be performed on all
atoms as required by the force field, the elastic network model can be carried out
on a subset of atoms. Often, for a protein, this would be the Cα atoms. Compared
with the standard NMA, this would result in a Hessian approximately tenfold lower
in order, thus, yielding considerable computational savings in the calculation of the
eigenvalues and eigenvectors because these routines are normally of the order of N3

operations, where N is the order of the Hessian matrix.

2.3 Essential Dynamics and PCA

After superposition to a common reference structure, a variance–covariance matrix
of positional fluctuations is constructed:

C =< (x(t)− < x >)(x(t)− < x >)T > (8)

where <> denotes an ensemble average. The coordinates x are denoted as a function
of time for clarity, but may be provided in any order and can be, for example, a
molecular dynamics trajectory or a set of experimental structures. C is a symmetric
matrix that can be diagonalized by an orthogonal coordinate transformation T:

C = T�TT (9)

with � the diagonal (eigenvalue) matrix and T containing, as columns, the eigenvec-
tors of C. The eigenvalues λ correspond to the mean square eigenvector coordinate
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fluctuation, and, therefore, contain the contribution of each principal component to
the total fluctuation. The eigenvectors are usually sorted such that their eigenval-
ues are in decreasing order. For a system of N atoms, C is a 3N × 3N matrix. If
at least 3N configurations are used to construct C, then 3N − 6 eigenvectors with
nonzero eigenvalues will be obtained. Six eigenvalues should be exactly zero, of
which the corresponding eigenvectors describe the overall rotation and translation
(that is eliminated by the superposition). If only M configurations are available (with
M < 3N), then at most M − 1 nonzero eigenvalues with corresponding eigenvectors
will result. If µi is the ith eigenvector of C (the ith column of T), then the original
configurations can be projected onto each of the principal components to yield the
principal coordinates pi(t) as follows:

pi (t) = µi · (x(t) −< x >) (10)

Note that the variance < pi
2 > equals the eigenvalue λi. These projections can

be easily transformed back to Cartesian coordinates for visualization purposes as
follows:

x′
i(t) = pi (t) · µi+ < x >. (11)

Two sets of eigenvectors µ and ν can be compared with each other by taking
inner products:

Ii j = µi · ν j . (12)

Subspace overlaps are often calculated as summed squared inner products:

Om
n =

n∑

i=1

m∑

j=1

(µi · ν j )
2, (13)

expressing how much of the n-dimensional subspace of set µ is contained within
the m-dimensional subspace of set ν. Note that m should be larger than n to achieve
full overlap (O = 1).

3 Methods

3.1 Standard NMA

For standard NMA, one needs a set of coordinates, a force field, and software to
perform the calculations. Often NMA is performed using molecular mechanics soft-
ware packages that are also able to perform molecular dynamics simulations, etc.
For a protein, the structural information is normally held in a PDB file. The software
will normally be able to interpret the file to determine the correct energy function us-
ing the selected force field. Any missing atoms should be added. Missing hydrogen
atoms also need to be added but most software packages have routines to do this.
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It is usual, but not a requirement of the methodology, to remove water and ligands.
Once the system is prepared, the first major calculation is energy minimization.

3.1.1 Energy Minimization

The two main energy minimization routines are steepest descent and conjugate gra-
dient. The former can be used in the initial stages, for the first 100 steps, for example,
followed by the latter. Sometimes, when approaching the energy minimum, the ac-
tual minimum cannot be found because of overstepping. This can present a problem
for NMA, where very precise location of the minimum is required. However, many
minimizers are able to adjust the step size to avoid overstepping. Normally, mini-
mization can be stopped when the root mean square force is approximately 10−4 to
10−12 kcal · mol−1 · Å−1.

3.1.2 Hessian Calculation

This step creates the Hessian matrix, which is the matrix of second derivatives of the
potential energy function with respect to the mass-weighted Cartesian coordinates.
It is a symmetric matrix and, therefore, it is not required to store the whole matrix.

3.1.3 Diagonalization of Hessian Matrix

This stage determines the eigenvalues and eigenvectors. Because of the large size of
this 3N × 3N matrix, where N is the number of atoms in the molecule, this stage of-
ten presents memory problems for large molecules (see Note 1). The process results
in a set of 3N eigenvalues and a set of 3N eigenvectors each with 3N components.
The eigenvalues are sorted in ascending order and the eigenvectors are sorted ac-
cordingly. The first six eigenvalues should have values close to zero because these
correspond to the three translational and three rotational degrees of freedom for the
whole molecule (see Note 2). The seventh eigenvector is the lowest frequency mode,
and it is often predicted to be a functionally relevant mode.

3.1.4 Comparison with Experimental Results

Eq. 6 shows how to measure the overlap with a functional mode derived from, e.g.,
two x-ray structures. To perform this calculation, one needs to calculate the exper-
imental displacements, �xexp

i . These displacements need to be calculated from the
experimental structures oriented in the same way as the minimized structure used
for the NMA. To do this, one can use a least-squares best fit routine to superpose
the two experimental structures on the minimized structure.
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3.2 Elastic Network Models

One major advantage of these models is that energy minimization is not required
because the structure used is already assumed to be in an energy minimum (see
Note 3). The steps are as follows:

• Prepare the structure, e.g., remove ligands and water molecules.
• Decide which atoms will build the network, e.g., just Cα atoms.
• Choose a cut-off length, Rc, which typically is 7 to 10 Å when using just Cα

atoms (see Note 4).
• Choose the spring constant, γ (see Note 5).
• Calculate the eigenvalues and eigenvectors (see Note 6).

From the last step onward, there is no essential difference to the standard NMA.
However, if calculations are performed on the Cα atoms only, then, naturally, one
can only compare with the movements of the Cα atoms in the experimentally deter-
mined functional mode, i.e., movements of side chains cannot be compared. Tama
and Sanejouand have made a comparison between the results from an elastic net-
work model and modes derived from a pair of x-ray structures for 20 proteins [7].

3.3 Essential Dynamics and PCA

3.3.1 PCA of Structural Ensembles

A principal component or essential dynamics analysis may be carried out on a mole-
cular dynamics trajectory or any other structural ensemble. It typically consists
of three steps. First, the configurations from the ensemble must be superposed,
to enable the filtering of internal motions from overall rotation and translation.
This is usually accomplished by a least-squares fit of each of the configurations
onto a reference structure (see Note 7). Second, this “fitted” trajectory is used
to construct a variance–covariance matrix that is subsequently diagonalized. The
variance–covariance matrix is a symmetric matrix containing, as elements, the co-
variances of the atomic displacements relative to their respective averages for each
pair of atoms for the off-diagonal elements and the variances of each atom dis-
placements along the diagonal. Atoms that move concertedly give rise to positive
covariances, whereas anticorrelated motions give rise to negative entries. Noncorre-
lated displacements result in near-zero covariances (see also Note 8). Diagonaliza-
tion of this covariance matrix yields a set of eigenvectors and eigenvalues, which
are usually sorted such that the eigenvalues are in decreasing order. The eigenvalues
represent the variance along each of the corresponding collective modes (eigenvec-
tors) and usually a small number of modes suffice to describe the majority of the
total fluctuation. As a third step, the original trajectory may be analyzed in terms of
the principal components. To this end, the trajectory is projected onto each of the
principal modes to yield the time behavior and distribution of each of the principal
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coordinates (see also Note 9). Often, two- or three-dimensional projections along
the major principal components are used to allow a representation of the sampled
distribution in configuration space or to compare multiple ensembles along the prin-
cipal modes of collective fluctuation. These projections onto single or multiple prin-
cipal coordinates can also be readily translated back into Cartesian space to yield an
ensemble or animation of the motion along a selection of principal coordinates.

In contrast to standard NMA, a PCA can be carried out on any subset of atoms,
and, for proteins, usually only Cα or backbone atoms are taken into account (see
also Note 9). This has the advantage that the storage and diagonalization of the
covariance matrix is less demanding, whereas the main collective modes are very
similar to an all-atom analysis [9, 26]. An additional advantage of a backbone-only
analysis is that artificial apparent correlations between slow side-chain fluctuations
and backbone motions are not picked up by the analysis. A PCA may be com-
pared with results from a standard NMA. However, to this end, one must perform
an all-atom PCA and the fluctuations must be calculated from mass-weighted dis-
placements [21]. This form of PCA is often referred to as “quasiharmonic analysis.”
If an all-atom analysis is required, an approximation may be used to retrieve only
the principal modes of fluctuation, that alleviates the need to store and diagonal-
ize the full matrix [26]. As mentioned above, the PCA technique is not limited to
the analysis of molecular dynamics trajectories but can be carried out on any en-
semble of structures. It can, e.g., be carried out to derive the principal modes from
sets of x-ray structures [27], to compare simulation data with experimental con-
formations [28–30] (see also Fig. 2), or to derive search directions from multiple
homologous structures to aid homology modeling [31].

3.3.2 Convergence of PCA Results Derived from Molecular Dynamics
Simulations

Principal components derived from different simulations or simulation parts allow
us to compare the major directions of configurational space and sampled regions
and to judge similarity and convergence. It has been observed that sub-nanosecond
protein molecular dynamics simulations suffer from a significant sampling problem,
resulting in an apparently poor overlap between the principal components extracted
from multiple parts of these trajectories [32, 33]. Nevertheless, it was observed that
despite the fact that individual principal components may be different, the subspaces
that are spanned by the major principal components converge remarkable rapidly
and show a favorable agreement not only between different simulation results, but
also between simulation and experiment [28, 30, 34, 35], see also Fig. 2.

The anharmonic dynamics along the principal modes of collective fluctuation that
corresponds to the jumping between multiple local energy minima results in a dif-
fusive dynamics of the principal coordinates [16, 17]. The analogy of this diffusive
dynamics to a multidimensional random walk allows one to assess the convergence
of the dynamics along the principal (and usually slowest) modes by comparison of
the time evolution of the principal coordinates with cosines that would result from
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Fig. 2 PCA of a set of x-ray structures of T4-lysozyme compared with ensembles obtained from
molecular dynamics simulations. Each structural ensemble is projected onto the two major prin-
cipal components extracted from the x-ray ensemble (a, b, d, e). Shown are the x-ray ensemble
(a) and three independent molecular dynamics simulations of 1 ns each (b, d, e). The black ar-
rows depict the starting structures of the simulations (WT for wild-type; M61 ‘D’ for the fourth
conformer of the M61 mutant). The color-coded structures (c, f) depict the domain character of
the motions, with the arrow illustrating the screw axis that describes the motion of the red domain
with respect to the blue domain. The first eigenvector describes a closure motion (c), whereas the
second eigenvector describes a twisting motion (f)

random diffusion [36,37]. A high cosine content typically indicates a nonconverged
trajectory. Note, however, that a lack of convergence of the dynamics along a set
of modes does not necessarily also imply that the directions of such modes or the
subspace they span are not converged or poorly defined. Provided that a sufficiently
converged trajectory is available, thermodynamic properties may be derived as en-
semble averages and can be readily mapped onto the principal coordinates to yield,
e.g., free energy landscapes (see Fig. 3).

3.3.3 Comparison of PCA Results from Different Sources

It is often useful to compare structural ensembles from different simulations or from
experiment with each other in terms of their major principal coordinates. It is in-
structive to discuss three possibilities that are often used to carry out such a com-
parison. First, separate principal component analyses may be carried out over each
individual ensemble. Subsequently, the resulting eigenvectors are compared with
each other, either individually or as, e.g., a subset of major directions. Such a com-
parison usually involves inner products between sets of eigenvectors as a measure
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Fig. 3 PCA of a peptide trajectory that covers reversible folding and unfolding events. The upper
panel depicts the structural ensemble projected onto the major principal modes, color coded to
configurational density (upper right panel), together with three representative structures from the
simulation (upper left panels). The lower panels depict the folding free energy landscape, revealing
three low-energy configurations (see also upper panel). The difference of the entropic contribution
at different temperatures is clearly visible (lower right panel)

for similarity. For sets of eigenvectors, the summed (or cumulative) squared inner
product is a useful measure of similarity that is zero for orthogonal, non-overlapping
subspaces and one for identical subspaces. Values from 0.3 to 0.4 already indicate
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significant overlap, because of the usually large dimensionality of the configuration
space as compared with the analyzed subspace. Alternatively, full inner product ma-
trices can also be used [26, 34]. This method focuses on the directions of the prin-
cipal modes rather than the sampled region along the modes. Therefore, a second,
complementary, method can be used to include this ensemble information. In this
case, the structures from one ensemble are projected onto the eigenvectors extracted
from another ensemble (usually together with the structures from that ensemble),
allowing a direct comparison of the sampled regions in each of the projected en-
sembles. This approach has proven particularly useful for cases in which one set of
eigenvectors can be regarded as a reference set, for example, those that were ex-
tracted from a set of experimental structures [28, 29]; see also Fig. 2. For cases in
which there is not one natural reference set of directions, a third approach may be
used. In such cases, multiple sub-ensembles may be concatenated into one meta-
ensemble on which the PCA is carried out. The individual sub-ensembles can be
separately projected onto this combined set of modes, allowing a direct compari-
son of sub-ensembles. This method has the advantage that differences between the
different sub-ensembles are frequently visible along one of the combined princi-
pal modes, even for subtle effects such as the difference between an apo- or holo
ensemble, or the effect of a point mutation [38].

3.3.4 Enhanced Sampling Techniques

Knowledge of the major coordinates of collective fluctuations opens the way to
develop specialized simulation techniques tailored toward an efficient or even sys-
tematic sampling along these coordinates, thereby alleviating the sampling problem
inherent to virtually all common computer simulations of biomolecular systems to-
day. The first attempts in this direction were aimed at a simulation scheme in which
the equations of motion were solely integrated along a selection of primary principal
modes, thereby drastically reducing the number of degrees of freedom [9]. However,
these attempts proved problematic because of nontrivial couplings between high-
and low-amplitude modes, even though, after diagonalization, the modes are linearly
independent (orthogonal). Therefore, instead, a series of other techniques has pre-
vailed that takes into account the full-dimensional simulation system and enhance
the motion along a selection of principal modes. The most common of these tech-
niques are conformational flooding [11] and essential dynamics sampling [12–14].
In conformational flooding, an additional potential energy term that stimulates the
simulated system to explore new regions of phase space is introduced on a selection
of principal modes (Fig. 4), whereas, in essential dynamics, sampling a similar goal
is achieved by geometrical constraints along a selection of principal modes. More
recently, the concept of conformational flooding was reformulated in the context
of metadynamics [39]. These techniques have in common that a sampling efficiency
enhancement of up to an order of magnitude can be achieved, provided that a reason-
able approximation of the principal modes has been obtained from a conventional
simulation.
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Fig. 4 Conformational flooding. (a) The principle of conformational flooding: configurations
along principal coordinates (PC’s) sampled during an molecular dynamics simulation are desta-
bilized in a subsequent set of simulations by an additional potential energy term, Vfl, to enhance
the probability of visiting previously unsampled minima. To this end, the original energy landscape
F is locally approximated by a harmonic potential F̃. b and c: Application to the prion protein. The
red arrow depicts the motion induced by the flooding potential in configuration space (b) and
mapped onto the structure (c)

4 Notes

1. Diagonalization routines exert great demands on memory. For example, the rou-
tine in AMBER [40] requires 8 × 9N(3N − 1)/2 bytes of memory. A 400-atom
system requires 1.7 Mbytes, but a 4,000-atom system requires 1.7 Gbytes [41]. A
number of methodologies have been devised to overcome this memory problem.
These methods are usually used to calculate only the lowest frequency eigenvec-
tors. Another alternative is to perform dihedral angle space NMA. This reduces
the number of variables by a factor of approximately 8 for proteins and approxi-
mately 11 for nucleic acids. These methods have been reviewed elsewhere [21].
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2. The first six eigenvalues should be close to zero. No eigenvalues should be nega-
tive. Negative eigenvalues indicate negative curvature on the energy surface and
suggest insufficient minimization.

3. A major advantage of this method over the standard NMA is that energy mini-
mization is not required. Because energy minimization does not normally bring
about large changes in conformation, it is to be expected that there would be
little difference between the results from the starting structure and an energy-
minimized structure.

4. It seems that choosing a value for Rc is often problematic. It relates to the radius
of the first coordination shell around the selected atoms. If one uses Cα atoms,
then its value (7–10 Å) should be longer than when using all atoms, where a
value of 3 Å would be more appropriate. Some reports suggest that results do not
vary dramatically with small variations in the cutoff distance [42]. Obviously,
the shorter the cut-off, the greater the savings there would be in the calculation
of the energy.

5. The value of γ has no effect on the eigenvectors and, thus, if one is only in-
terested in the character of the motions, then its value is not important. How-
ever, its appropriate value is sometimes determined for x-ray structures by
calculating atomic mean square fluctuations and matching them to experimen-
tally determined B-factors. A value of 1.0 kcal/mol Å2 might be a reasonable
starting value, if no appropriate value is known.

6. Depending on the structure, some regions may be only loosely connected to the
rest of the molecule, e.g., a terminal region in a protein. In such a case, the
movement of this region could appear as a low-frequency mode. This may be
undesirable if one is interested in global motions. Some programs (private com-
munication from Dr. Atsushi Matsumoto) allow one to provide extra connec-
tions to these regions, thus, effectively integrating them more with the rest of the
structure.

7. Before a PCA, all structures should be superimposed onto a common reference
structure. This can be problematic for very flexible systems such as peptides,
where the fit may be ambiguous, leading to artificial structural transitions. In
certain cases, such problems may be alleviated by using a progressive fit, where
each structure is superimposed onto the previous one. It is also important to note
that when results of different PCAs are to be compared with each other, then
each individual PCA should be based on the same reference structure used for
superposition.

8. PCA is a linear analysis, i.e., only linear correlations between atomic displace-
ments enter the covariance matrix. This means that nonlinear correlations be-
tween atom movements may be overlooked because they get spread out across
multiple collective coordinates. In practice, this is usually not a big problem,
except for systems that undergo large-scale rotations.

9. Similar to NMA, PCA can also be carried out in dihedral angle space [26, 43].
Although it has the advantage that it does not require superposition to a reference
structure (because it is based on internal coordinates), PCA in dihedral space
has two main disadvantages. First, major collective dihedral transitions do not
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usually correspond to major transitions in Cartesian space. For example, a small
change of one backbone dihedral in a central residue in a two-domain pro-
tein can result in a large-scale motion of the two domains with respect to each
other. Although such a motion would likely be relevant, it would easily be over-
looked. Second, the metric of the configuration space cannot be retained in a
straightforward way. This may lead to artificial correlations between the dihe-
dral coordinates and complicates the translation back to Cartesian space for, e.g.,
visualization purposes.
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