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Secondary Structure Propensities in Peptide Folding Simulations:
A Systematic Comparison of Molecular Mechanics Interaction Schemes
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Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical
Chemistry, Göttingen, Germany

ABSTRACT We present a systematic study directed toward the secondary structure propensity and sampling behavior in
peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combi-
national result of force field, water model, and electrostatic interaction schemes and compare to available experimental charac-
terization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 ms
and included simulations that started from both folded and extended conformations. Despite remaining sampling issues,
a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding
prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance
of the relative stabilities of helical and extended conformations.
INTRODUCTION

Molecular dynamics (MD) simulations are routinely utilized to

study the folding dynamics of peptides and small proteins as

well as biomolecular aggregation. The critical constituents of

such molecular mechanics studies are the validity of the under-

lying physical models together with the assumptions ofclassical

dynamics and a sufficient sampling of the conformational

space. To verify and validate simulation results, a careful com-

parison of the simulation outcome directly to experimental data

is mandatory (e.g., obtained by nuclear magnetic resonance

(NMR), circular dichroism (CD), or infrared spectroscopy (1)).

Comprehensive reports on applications and improve-

ments, and the remaining challenges of empirical force-

field-based simulation methods, the choice of water model,

and electrostatic interaction schemes to study biomolecular

systems, have been discussed in the literature (2–7).

Within the framework of MD force fields, particular impor-

tance is directed toward the consistent and proper parameter-

ization of the atomistic interactions, with the functional

formulation of the bonded and nonbonded forces often similar

among nonpolarizable MD schemes. The latest efforts to

improve the accuracy of the popular and commonly used

force fields AMBER (8,9), CHARMM (10), GROMOS96

(11), and OPLS (12) mainly focused on refining parameters

for the torsional potentials of the protein backbone to balance

the conformational equilibrium between extended and helical

structures.

A recent comparative study using selected variants of the

AMBER, CHARMM, GROMOS96, and OPLS force fields

reported on converging results for folded proteins between

the different compared models. It was suggested that there

is an apparent consensus view of protein dynamics (13). In
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that study, simulations of relatively short lengths were per-

formed and the natively folded state was used as starting

point, possibly biasing the results (13).

For folding simulations, such a systematic test has not

been carried out so far, although with growing computer

power several approaches toward the in silico folding

problem for peptides and small proteins, both using an

implicit or explicit representation of the solvent environ-

ment, have been presented (14–20). Given an efficient

sampling of conformational space and access to sufficient

simulation timescales, one should expect to sample confor-

mational ensembles close to the natively most populated

states in solution, even when starting from peptide conforma-

tions away from the native structure. Hence, the application

of biomolecular simulations offers the unique opportunity to

study and predict complex processes in detail that underlie

the protein folding thermodynamics and kinetics: for

instance, the early events of peptide and protein folding,

marked by established and stabilized secondary structure

motifs (21).

A realistic preferential formation and representation of

secondary structure is therefore a critical prerequisite for the

successful study of in silico folding and aggregation. Thus,

the question of overall peptide folding representation in

different force fields prompted us to investigate the folding

behavior and secondary structure formation at the micro-

second timescale of a number of prototypic peptides in

different MD force fields.

Here, we present the results of peptide folding and

secondary structure formation for five model peptides (two

b-hairpins, two a-helical peptides, and the Trp-cage) in

five state-of-the-art force fields and different schemes for

calculating electrostatic interactions. Extensive MD simula-

tions in explicit water, starting from both extended and

prefolded structures are presented that address the folding
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TABLE 1 Experimental characterization of the model peptides

Peptide

Secondary structure

(experimental conditions)

Experimental

technique Reference

Chignolin b-Hairpin: 60% (300 K, pH 5.5) CD and NMR (22)

Mbh12 b-Hairpin: 66 5 4% (278 K, pH 5) CD and NMR (23)

Trp-cage a-Helix: 30% (300 K, pH 7) CD and NMR (24)

Fs21 a-Helix: 90% (Fs-NH2, 273 K, pH 7) CD (25)

a-Helix: 55% (278 K) Raman (26,27)

a-Helix: 50% (MABA-Fs-NH2, 300 K, pH 7) CD (28)

Helical: 68% (300 K, pH 7) AGADIR prediction algorithm (21)

Agd1 Helical: 50% (300 K, pH 7) AGADIR prediction algorithm (21)
thermodynamics and sampling characteristics of the different

interaction schemes.

METHODS

Model peptides

We performed MD simulations of five isolated peptides, which adopt

different well-defined, stable secondary or tertiary structures in solution

(Table 1). We considered the chosen peptides as minimalistic model systems

to probe the different force fields for either a-helical or b-sheet folding

propensity. See the Supporting Material for details.

Setup and simulation procedure

The simulations were categorized according to the name of the peptide and

the starting model. An overview of the simulated peptide systems is given in

Table 2.

To overcome limited sampling and possible bias imposed by the start-

ing structure, each peptide was simulated starting from both a folded and

an unfolded (extended) conformation. The initially extended structures

were obtained by constructing the respective peptide chain with PyMOL

(29) by imposing an all-trans geometry to every backbone dihedral.

The folded conformations were either obtained from the Protein Data

Bank (i.e., PDB; first model of the respective NMR-ensembles) 1uao

(Chignolin), 1k43 (Mbh12), 1l2y (Tc5b), or, in case of the helical peptides

(Fs21, Agd1), by building an a-helical conformation. The Fs21 and Agd1

peptides were capped with acetyl groups at the N-terminus. To cap the

C-terminal site, N-methyl- and amino groups were used, respectively.

The terminal residues of the Chignolin and Mbh12 peptides were consid-

ered charged. The protonation state of the peptides was according to the

one in solution at pH 7; counterions (Naþ, Cl�) were added to adjust for

excess charges.

The MD simulations of the respective peptide monomers and subsequent

analysis were carried out using the GROMACS software package (version
Biophysical Journal 97(2) 599–608
3.3.1) (30–32). Each of the production runs after equilibration was 250-ns

long. In case of the Tc5b peptide, three additional 30-ns runs per force field

were carried out.

We focused on the comparison of force-field variants as implemented in

the GROMACS simulation software suite: GROMOS96 43A1 (33,34),

GROMOS96 53A6 (11,35), OPLS-AA/L (12,36), AMBER03 (ff03) (8),

and AMBER99SB (ff99SB) (9,37). The input parameters were chosen

according to the original publications of the developers to ensure a system-

atic comparison between the tested force fields. Table S1 summarizes the

cutoff distances for the nonbonded interactions that were used with the

different force fields, respectively.

All simulations were carried out with electrostatic schemes as originally

used for force-field development. In addition, the particle mesh Ewald

(PME) (38) method was used for comparison, as it is nowadays common

practice to apply PME in conjunction with force fields like OPLS and GRO-

MOS96 (G96), which were originally designed using cutoff and reaction-

field (RF) (39), respectively.

In our study, the electrostatic interactions with PME were calculated with

a grid spacing of 0.12 nm. The relative tolerance at the cutoff was set at

10�6, and electrostatic interactions for a distance smaller than the real space

cutoff were calculated explicitly. For the calculations with reaction-field

(G96 force fields), the relative dielectric permittivity outside the cutoff

sphere was set to 3 ¼ 54 (SPC water) (40).

To set up the simulation system, each peptide was placed in a periodic

truncated octahedral box solvated with explicit water. The distance between

solute and box was chosen to be at least 1.5 nm on all sides. The SPC water

model (41) was used for the simulations with the G96 43A1/53A6 force

fields; the TIP4P solvent model (42) was applied when using the OPLS-

AA/L force field, and TIP3P was applied (43) for AMBER03 and AM-

BER99SB. The system was subsequently energy-minimized using steepest

descent. Initial velocities were taken from a Maxwell distribution at 300 K.

Rigid bond constraints were chosen, providing a reasonable representation

of the covalent bond geometry of the studied timescales (44). All protein

bonds were constrained with the SHAKE algorithm (45) for simulations

with G96 43A1/53A6 and OPLS-AA/L, and LINCS (46) when using

AMBER03 and AMBER99SB. An integration time step of 2 fs was chosen.
TABLE 2 Summary of performed simulations with the respective number of residues (Nres) and the expected net charge in water

at neutral pH (Ncha) for each model peptide

Peptide Sequence (Nres/Ncha) Simulation name PDB # Starting structure Simulation length [ns]

Chignolin NH3
þ-GYDPETGTWG-CO2

� CHI (PDB: 1uao) Extended 8 � 250

(10/2�) CHI.REF b-Hairpin 8 � 250

Mbh12 NH3
þ-RGKWTYNGITYEGR-CO2

� MBH (PDB: 1k43) Extended 8 � 250

(14/2þ) MBH.REF b-Hairpin 8 � 250

Trp-cage (Tc5b) NH3
þ-NLYIQWLKDGGPSSGRPPPS-CO2

� TC5B.REF (PDB: 1l2y) a-Helix/turn 8 � 250

(20/1�) 8 � 3 � 30

Fs21 Ace-A5[AAARA]3A-NME FS21 Extended 8 � 250

(21/3þ) FS21.REF a-Helix 8 � 250

Agd1 (de novo) Ace-EVLMKVLMEIYLK-NH2 AGD1 Extended 8 � 250

(13/0) AGD1.REF a-Helix 8 � 250
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Water was constrained using SETTLE (47). Neighbor lists for nonbonded

interactions were updated every five steps for the G96 and OPLS, and every

10 steps for simulations with the AMBER force fields. Berendsen coupling

algorithms (48) were applied to the simulation system. The temperature was

kept constant by weakly (t ¼ 0.1 ps) coupling the system to a temperature

bath of 300 K. Likewise, the pressure was kept constant by coupling the

system to a pressure bath of 1 bar (t ¼ 1 ps).

Analysis

For assessment of secondary structure type and content, the DSSP definition

introduced by Kabsch and Sander (49) was used. The data was averaged

over both simulations starting from the extended and the reference structure.

The first 10% of the 250-ns and the first 50% for the 30-ns runs of

each trajectory were omitted to reduce the bias of the respective starting model.

Nuclear Overhauser enhancement

The nuclear Overhauser enhancement (NOE) distance restraint sets for

Chignolin, Mbh12, and Tc5b (available from the PDB) were used to calcu-

late ensemble sum-averaged violations (r�6) of NOE distances in the MD

ensembles. The violations were calculated based on a set of 250 conforma-

tions (one snapshot per ns) taken from each trajectory, respectively. To

account for the different representations of the peptides in the used force

fields, each of the 250 representative structures was converted to a OPLS

topology with the pdb2gmx program before analysis, adding explicit proton

positions to aliphatic carbon atoms.
Principal component analysis

The principal component analysis (PCA) (50) was carried out over the

combined trajectories starting from different initial structures (extended

and reference) for each peptide in each force-field test setting. The covari-

ance matrix of atomic displacement was calculated and diagonalized for

the coordinates of main-chain and Cb atoms. All structures were superim-

posed to the respective reference conformation before analysis.

RESULTS

Structural properties

The conformations sampled during the simulations were

compared to experimental data from CD and NMR measure-

ments.

Root mean-square deviation

We performed an analysis of the root mean-square deviations

(RMSD) for the peptides with experimentally determined

native state (Chignolin, Mbh12, and Tc5b). Fig. 1 shows

the RMSD for the main-chain and Cb atom coordinates of

these three peptides to the respective NMR reference structure

as function of simulation time. A low RMSD (<0.2 nm)

denotes a conformational state that is close to the one
FIGURE 1 RMSD of the main-chain and Cb atoms with

respect to the NMR reference structure as function of

the simulation time for Chignolin, Mbh12, and Tc5b.

RMSD curves for the simulations CHI (A), CHI.REF (B),

MBH (C), MBH.REF (D), TC5B.REF �250 ns (E), and

TC5B.REF �30 ns (F) were smoothed.
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observed in the experiment. Averaged RMSDs for each simu-

lation are summarized in Table S2.

We will first focus on the RMSDs for the b-hairpin-

peptides (Chignolin, Mbh12). For the simulations starting

from the folded reference state of Chignolin (CHI.REF),

we found only small structural deviations over the total range

of simulation time in most of the different force fields, indi-

cating a stable fold.

Particularly low deviations from the reference structure are

found with ff99SB, OPLS-PME for the CHI.REF simula-

tions. The hairpin structure is partly lost for the simulations

with ff03, 43A1 as well as OPLS-Cutoff. Different results

were obtained for the simulations started from an extended

peptide chain (CHI). The Chignolin peptide is folded to

a structure very close to the experimentally determined one,

for example with ff99SB and ff03, respectively (Fig. 1,

A and B). A high structural stability from the prefolded state

and fast sampling toward the reference therefore led to the

overall smallest RMSDs in both AMBER force fields, irre-

spective of the initial configuration. In addition, the correct

folded state was adopted in all G96 simulations (Fig. 1, A
and B). The OPLS force fields with either PME or cutoff,

however, did not sample the folded configuration within

250 ns. This is in contrast to the result that the hairpin structure

was found to be stable for the combination of OPLS and PME.

A different scenario arises from the simulations starting

from the extended chain of the Mbh12 peptide (MBH).

Hairpin formation took place rather fast in all studied G96

and OPLS force-field variants. The peptide conformations

were also stable from the reference structure for these force

fields. The MBH simulations in both AMBER force fields,

however, did not sample stable hairpin structures, and the

folded state was only transiently visited. Instead, partly

a-helical conformations were sampled, which resulted in

large RMSDs. Interestingly, this was also observed in the

simulations starting from the NMR reference structure. The

hairpin peptide did not unfold in any of the other MBH.REF

simulations (Fig. 1, C and D).

The Tc5b simulations were started only from the reference

NMR structure in the different force-field variants. In addition

to one simulation of 250 ns, three independent runs of 30 ns

were conducted to check for statistical significance of our

results (Fig. 1, E and F). Reproducible low RMSDs of

~0.12 nm were found for the structural ensembles sampled

in the ff99SB force field. In contrast, large RMSDs were

observed in the simulations using the G96 force fields.

Furthermore, substantial unfolding events occurred already

within the first 30 ns in most of the G96 trajectories (Fig. 1 F).

Nuclear Overhauser enhancement

An additional structural comparison to experimental data for

both b-hairpin peptides and the Trp-cage can be drawn based

on NOEs between proton pairs or groups of protons obtained

from NMR experiments. Measured NOEs are usually trans-
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lated into proton-proton distance ranges. Exceeding the

upper limit of such a distance range was counted as NOE

violation. For the studied peptides, the set of NOE restraints

included short-range restraints between atoms on neigh-

boring residues and intraresidual atoms, medium- and

long-range restraints (see the Supporting Material). We

determined the violations as an ensemble averaged sum.

Results are shown in Table 3. As a consequence of slow or

incomplete sampling toward the native structure, in general

we found a larger total violation for the simulated ensembles

starting from the extended conformations as compared to the

simulations starting from the prefolded state.

From the calculated interproton distances, we observed

marginal deviations from the experimental structures for all

hairpin peptides with the 53A6-PME and the 43A1-RF

force-field variants, irrespective of the peptide’s starting

conformation. Except for 53A6-PME, all force fields showed

rather large structural deviations for the Mbh12 peptide

when starting from the extended state. The partially helical

Trp-cage, however, is not represented correctly in any of

the G96 force fields; the 53A6 versions, especially, yielded

large NOE violations. The ff99SB force field showed fewest

violations of distance restraints for the Trp-cage simulations

with an ensemble sum-average of <2 nm, corresponding to

a stable fold over the simulated 250 ns (Table 3).

This is in line with low values of summed NOE violations

found with ff99SB and OPLS-PME, and to some extent with

ff03, for both hairpin and helical peptides, in trajectories

starting from the NMR reference structure (Table 3).

Secondary structure propensity

We calculated the average populations of various secondary

structure elements as listed for the individual simulations in

Tables 4 and 5. Each listed fraction represents a mean over

450 ns for the peptides Chignolin, Mbh12, Fs21, Agd1, and

270 ns for the Tc5b in each specified force-field configuration,

respectively. The development of the secondary structure

content and representative snapshots for all simulations as

a function of the simulation time are shown in Fig. S1–S10.

The highest fractional population of turn and b-sheet

conformations were found in the simulations of the hairpin

TABLE 3 Sum of NOE distance violations as ensemble

average over 250 structures

System

Sum of NOE violations [nm]

CHI CHI.REF MBH MBH.REF TC5B.REF

ff03-PME 0.99 0.72 7.83 3.87 3.10

ff99SB-PME 0.66 0.64 7.61 1.17 1.95

43A1-RF 1.30 1.17 3.04 1.16 6.09

43A1-PME 0.83 0.59 9.19 1.05 4.54

53A6-RF 0.98 0.72 7.09 0.83 7.25

53A6-PME 2.69 0.67 1.22 0.87 10.03

OPLS-Cutoff 5.32 1.34 10.27 1.11 3.21

OPLS-PME 12.04 0.61 5.29 0.95 2.73

Matthes and de Groot



Comparison of MD Interaction Schemes 603
TABLE 4 Averaged secondary structure content from DSSP analysis for the hairpin peptides

System

a-Helix 310-Helix b-Sheet b-Bridge Turn

CHI MBH CHI MBH CHI MBH CHI MBH CHI MBH

ff03-PME 0.0 5.6 0.2 3.7 23.0 0.8 5.3 0.5 33.4 12.6

ff99SB-PME 0.0 0.4 0.1 0.9 26.2 16.9 5.9 1.3 37.1 14.5

43A1-RF 0.4 0.0 0.1 0.2 10.8 27.2 7.0 2.6 18.0 4.8

43A1-PME 0.1 0.0 0.3 0.1 8.8 45.9 0.3 2.1 22.6 10.1

53A6-RF 0.1 0.0 0.1 0.1 19.6 37.6 4.7 2.0 25.7 8.1

53A6-PME 0.0 0.0 0.2 0.0 15.5 34.3 4.6 2.0 24.7 5.1

OPLS-Cutoff 0.0 0.0 1.9 0.0 1.7 27.0 2.1 1.4 15.8 14.0

OPLS-PME 0.0 0.0 0.0 0.0 11.6 32.3 3.6 3.0 18.6 5.7
peptides with ff99SB, ff03 for Chignolin and with 43A1-

PME, both 53A6 sets, and OPLS-PME for Mbh12 (Table 4).

These results are compatible with stable hairpin-structures,

as found in solution. A significantly low presence of

extended b-structures is observed in the conformational

ensembles produced by OPLS used with cutoff for the

Chignolin peptide. The same is true for the simulations

of Mbh12 with ff03. Moreover, in ff03 a notable extent of

a- and 310-helix structures was sampled instead, which

was not found for the other hairpin peptides and appears to

be in contrast to the experimental observations.

The secondary structure analysis of the helical peptides

yielded a picture with larger differences between the occu-

pied populations (Table 5).

Several differences in the secondary structure content for

Tc5b (Trp-cage) were observed in the various tested force

fields. The highest helical propensity was obtained with

ff99SB and ff03. Both force fields yield the same percentage

of a- and 310-helix, preserving the content of the reference

state. In contrast, the 43A1 and OPLS force fields sampled

no or only very few 310-helix structures, but maintained a-

helical structures. A low occurrence of helical content is

found with the 53A6 force-field variants, which also sampled

the overall highest amount of b-structures for the Trp-cage

among all tested force fields.

We identified the content of a-helical conformations in the

simulations as a function of time (Fig. 2) to better assess the

representation of the mainly helical peptides, which were

also simulated from the extended conformation (Fs21 and

Agd1).
In the respective combinations of force-field and electro-

static scheme we observed a distinct trend with a marked

difference between the two different initial conformations

for the Fs21 peptide (Fig. 2, A and B). Starting from the

completely a-helical reference state of Fs21, the helix content

in all systems, except for the simulations with ff03 and

OPLS-PME, vanished rapidly (Fig. 2 A). Moreover, the

helical content was found to be substantially higher with

ff03 than in any of the other force fields. The Fs21 peptide

did not visit any helical conformation with ff99SB, but

instead sampled coil structures. The simulations with 43A1

showed a tendency to nonlocal b-bridge/sheet contacts

between the terminal sites of the peptide. The preference

of coil and extended structures over helical ones was less

pronounced when the reaction-field approach for electro-

statics was used. Most notable for the simulations of Fs21

is an observed loss or complete absence of helical content

in most of the G96 simulations. Particularly low fractions

of a-helix and a preferential conversion to extended confor-

mations were found when using the 53A6 force field, regard-

less of the applied model for electrostatic treatment and

starting structure. In fact, b-sheet was the predominant

secondary structure for the Fs21 peptide with 53A6-PME.

Here, the whole peptide was readily folded into stable hair-

pinlike structures.

Starting from the extended conformation, the formation of

an a-helix took place only in the simulations with the ff03,

OPLS-Cutoff, and transiently with the 43A1-RF force field

(Fig. 2 B). Sampling from the extended peptide chain did

not converge within 250 ns with OPLS-PME.
TABLE 5 Averaged secondary structure content from DSSP analysis for the helical peptides

System

a-Helix 310-Helix p-Helix b-Sheet/ b-Bridge Turn

TC5B FS21 AGD1 TC5B FS21 AGD1 TC5B FS21 AGD1 TC5B FS21 AGD1 TC5B FS21 AGD1

ff03-PME 33.8 74.4 32.5 15.0 0.8 9.2 0.0 0.0 0.0 0.0 0.0 0.0 9.9 4.7 14.0

ff99SB-PME 34.2 0.6 5.7 15.1 2.5 6.8 0.0 0.0 0.0 0.0 8.7 0.2 10.4 8.1 10.4

43A1-RF 26.8 7.8 25.7 0.4 0.6 0.0 0.2 0.3 20.0 3.1 14.2 3.6 15.6 10.0 8.4

43A1-PME 25.9 16.8 3.6 0.1 0.3 0.1 0.0 0.0 25.8 3.5 16.6 2.9 9.8 7.7 12.6

53A6-RF 7.1 0.3 2.7 0.3 0.1 0.1 0.1 0.0 1.8 5.4 18.4 3.5 5.3 5.4 7.8

53A6-PME 3.6 0.1 0.3 0.0 0.0 0.0 0.5 0.0 0.1 9.7 36.3 16.1 4.3 5.2 3.2

OPLS-Cutoff 22.5 14.5 14.0 1.2 4.5 4.6 0.0 0.0 0.1 0.2 3.4 0.0 17.9 13.3 18.7

OPLS-PME 20.7 13.4 2.7 1.7 3.2 4.3 0.0 0.1 0.0 0.2 4.3 6.4 19.9 12.6 11.9
Biophysical Journal 97(2) 599–608
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FIGURE 2 Percentage of a-helical segments present in

the trajectories of Fs21 and Agd1 peptides as function of

simulation time. Helical content curves for the simulations

FS21 (A), FS21.REF (B), AGD1 (C), and AGD1.REF (D)

were smoothed.
The comparison to the experimental findings (Table 1)

indicate that, for the conditions used in our simulations close

to the melting temperature of the Fs21 peptide at ~300 K,

neither a high helicity, as found with ff03, nor the completely

extended structures sampled with the G96 force fields, are

reasonable. Instead, a helical content of ~50% would be

consistent with the available CD data, therefore suggesting

that only the FS21.REF simulation with OPLS and PME is

reasonably well in line with the helical content found in

the experiment.

The relative preference toward a certain secondary struc-

ture element is less distinct for the Agd1 peptide in the

different force fields, although the overall trends are similar

to the results obtained for Fs21 (Fig. 2, C and D). Helix

formation proceeded fast with ff03, while no helix formation

and fast unfolding of the helix were observed with the 53A6

force field. The setup with 43A1 preserved the most helical

content starting from the reference state of the Agd1 peptide.

In addition, a significant amount of p-helix is observed,

especially in combination with PME, which was not

observed in simulations with other force fields or any of

the other peptides. The repeated interconversion of a- to

the p-helix can be seen as oscillation in the helical content

plot (Fig. 2 D).

The helical content predicted with AGADIR for Agd1

(50% at 300 K) matched best with the ff03 and 43A1 simu-

lations, while it was lower with all other remaining force

fields.

In general, for simulations where force fields with

different methods for the electrostatic interactions are used,

distinct variations are observed. Particularly, the balance

between the sampling of a-helix and b-sheet is affected.

As can be seen from the analysis, the OPLS force field popu-
Biophysical Journal 97(2) 599–608
lates more sheet and less helix in all simulations with PME

than with a simple cutoff for the electrostatics. For the

53A6 force field, the relative populations of a-helix and

b-sheet are similarly affected. The differences are less

distinct and systematic for the 43A1 model.

To further assess these differences we performed a dihedral

analysis, obtaining a more direct view on the adopted local

backbone conformations (Fig. S12, Fig. S13, and

Fig. S14). The results highlight the preferential and relative

sampling of extended versus helical structures for the model

peptides, particularly for the simulations carried out with the

G96 53A6 force field.

Sampling Properties

Principal component analysis

The conformational space explored by the peptides in each

simulation was quantified using PCA (see Methods).

Figs. 3 and 4 show the projections of the trajectories onto

the plane spanned by the first two common eigenvectors

obtained from the PCA for the two hairpin peptides, respec-

tively. The covered area in the projections represents the

sampled conformational space in the given force field and

with respect to the reference structure. Each point is a low-

dimensional representation of a conformation sampled in

the trajectory.

The PCA projections of the Chignolin peptide simulations

with the different force fields shown in Fig. 3 exhibit mostly

overlaying phase space regions close to the reference struc-

ture. This denotes that the folded state was successfully

found from the extended structure. Starting from the pre-

folded hairpin structure of Chignolin, mostly conformations

close to the reference structure were sampled, compatible
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FIGURE 3 Comparison of the

conformational space sampled in the

simulations of the Chignolin peptide

with ff03 (A), ff99SB (B), 43A1-RF

(C), 43A1-PME (D), 53A6-RF (E),

53A6-PME (F), OPLS-Cutoff (G), and

OPLS-PME (H). The individual trajec-

tories were projected onto the first two

common eigenvectors obtained from

the PCA of the combined simulation

runs for each force field, respectively.

The location of the NMR reference

structure and the completely extended

starting conformation is indicated by

a dot. Snapshots from each trajectory

are shown with open circles.
with a stable hairpin in solution. Interestingly, irrespective of

the initial structure, almost the same conformational space is

sampled by the ff99SB force field, indicative of a converged

ensemble. Both independent trajectories (CHI and CHI.REF)

cover the same area in the projection close to the NMR refer-

ence state (Fig. 3 B). For ff03, 43A1-RF, and 43A1-PME

we found strongly overlapping areas in the projections of

the simulations, irrespective of the starting conformations

(Fig. 3, A, C, and D). The 53A6 force-field variants also

found stable structures of the Chignolin peptide, sampling

regions close to the reference (Fig. 3, E and F). In particular,

the conformational space around the NMR reference was

sampled exhaustively with 53A6-PME for both initial condi-

tions, corresponding to the lowest averaged RMSDs and

sum-averaged NOE distance violations among all tested

force fields (Fig. 3 F). The overall trends of the conforma-

tional sampling in the simulations of Chignolin with

OPLS-PME (Fig. 3 H) and OPLS-Cutoff (Fig. 3 G) are

similar. The simulation ensembles, when started from the

extended hairpin peptide (CHI), do not contain defined struc-

tures close to the reference state. A broad area corresponding

to predominantly unfolded conformations was sampled with

only few structures approaching the reference state. The

explored conformational space in the CHI.REF simulations,

however, was only very small and close to the reference.

This substantial difference in the extent of visited phase
space results in well-separated regions for the simulations

with the different initial structures, especially with OPLS-

PME (Fig. 3 H).

The PCA of the trajectories for Mbh12 yielded a less

uniform picture concerning the sampling behavior of

different force fields. For ff03, both trajectories of the hairpin

peptide sampled the same regions of conformational space in

the PCA projection, as seen before in the case of Chignolin.

Most of the structures did not match with the NMR reference

(Fig. 4 A). This is in line with the observation that the Mbh12

hairpin was least stable in ff03 among all force fields.

Fig. 4 B shows an overlay of sampled phase space for both

production runs with ff99SB, with structural ensembles close

to the reference. A refolding event of the hairpin during the

MBH.REF simulation resulted in a stable off-register struc-

ture, which is observed as a strongly sampled substate. As

shown in Fig. 4 F, the simulations of Mbh12 carried out

with 53A6-PME yielded nearly identical conformational

ensembles in the projection, extensively populating confor-

mations close to the NMR reference state.

In contrast, the sampled conformational space in the MBH

and MBH.REF trajectories are separated for all other force

fields. The 43A1-RF simulation starting from the extended

peptide chain populated several substates in the PCA projec-

tion en route to hairpin formation (Fig. 4 C). We found mark-

edly separated areas when comparing this projection to the
FIGURE 4 Conformational space

sampled in the simulations of the

Mbh12 peptide. Projections of the NMR

reference structure, extended starting

conformation, and snapshots from each

trajectory are denoted according to Fig. 3.
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one obtained from the 43A1-PME trajectories (Fig. 4 D). The

projected simulation ensemble of Mbh12 with 53A6-RF was,

contrary to one obtained with 53A6-PME, separated. The

explored conformational space in the MBH simulation with

the 53A6-RF force field appears very small and dense

(Fig. 4 E).

The projections of the OPLS trajectories resemble the ones

of the Chignolin peptide. The simulations from the extended

chain (MBH) sampled mainly two states, which are separated

in conformational space from the reference. Starting from the

hairpin (MBH.REF), mostly folded conformations were

gauged during the simulation as shown in Fig. 4, G and H.

Pronounced differences in conformational space sampling

could also be found among the probed force fields for the

simulations of the Trp-cage. The PCA projections are shown

in Fig. S15.

DISCUSSION

As seen from the NOE and PCA analysis, most of the simu-

lations starting from the extended and folded structure

showed differences in the sampled conformational ensem-

bles indicating incomplete convergence. The only excep-

tions are the simulations with both tested AMBER force

fields, in which the conformational space was quickly

explored and did not critically depend on the initial structure.

The ff03 force field compared favorably to available exper-

imental data in most of the simulations carried out. The only

exceptions are a particularly high percentage of helical

content for the polyalanine peptide Fs21 and the unfolding

of the Mbh12 hairpin, indicating a slight preference of helix

over extended b-sheet conformations with ff03. This is in

line with the results from Hornak et al. (9) for trialanine

peptides and is known from previous AMBER force fields

(52,53).

A fast sampling toward the reference state of the Chignolin

peptide and particularly low RMSDs for the Trp-cage were

found for the ff99SB force field. The analysis of secondary

structure content and the low interproton distance violations

suggest that the simulations with ff99SB agree well to avail-

able experimental data. The content of a-helix for the mainly

helical peptides (Fs21, Agd1) was likely underestimated.

The GROMOS96 force fields revealed an underestimation

of propensity for sampling a-helical conformations in the

simulations. While the results for the 43A1 version were

well balanced for most of the model peptides, a significant

disparity was the considerable amount of p-helix, which

was not found in the other force fields. Different methods

for electrostatics (RF, PME) in conjunction with the 43A1

force field were found to have little effect on the folding

characteristics of the model peptides. The simulations using

PME showed a slightly better structural representation, but

sampling might be more efficient with the reaction-field

approach (54). With the 53A6 force-field variants, b-sheet

formation was most abundant and persistent when com-
Biophysical Journal 97(2) 599–608
paring the results from all simulations. The structural repre-

sentation of the hairpin peptides was in very close agreement

with NOE data. Preformed a-helical conformations were,

however, least stable with 53A6 in all helical model

peptides. Moreover, using PME appears to favor extended

conformations even more. In accordance with our results,

reproducible unfolding of a-helical peptides was reported

recently by Cao et al. in a study presenting refined terms of

conformational backbone description for 53A6 (55). Another

study also found reduced structural variety and less covered

phase space in the simulations with 53A6 compared to earlier

GROMOS96 variants, which was suggested to be due to the

increased partial charges on the backbone carbonyls and

amides (11,56). The peptide torsion angle potentials used

within the GROMOS 53A6 force field are currently being

revised (B. Zagrovic, Split Mediterranean Institute for Life

Sciences, and A. E. Mark, Molecular Dynamics Group,

School of Molecular and Microbial Sciences, University of

Queensland, personal communication, 2009).

The combination of OPLS force field and PME for electro-

statics provided superior results compared to the OPLS with

a straight cutoff, and most of the other force field models,

when representing the folded state. However, the chosen

initial conformations affected the sampled structural ensem-

bles considerably. A dependence on the initial conditions,

especially for the OPLS force field, was apparent, suggesting

slower conformational sampling than observed in the other

studied force fields. The sampling differences between the

different force fields indicate a different roughness of the

respective energy landscapes, affecting the convergence of

the simulations.

For the helical peptides, we found least overall concurrent

sampled secondary structure with the different force fields as

the helical systems were simulated near their melting temper-

ature. In this regime, small shifts in the free energy involve

large changes in the population of folded and unfolded

conformations, and thus slightly different melting tempera-

tures in the different force fields might contribute to the

found pronounced differences in sampled helical propensity

among the simulations.

In the large set of simulations presented here, the

CHARMM force field was not included, as it is still lacking

a validated port for the GROMACS software package. As-

sessing the performance of the CHARMM force field in

the context of the discussed simulation results would be an

interesting aspect to address in future studies.

CONCLUSION

Peptide folding with MD simulations is inherently dependent

on the accuracy of the applied force field. The observed simi-

larities between different force fields support the consensus

view of biomolecular dynamics (13), but remaining differ-

ences emphasize the importance of continuous force-field

development and refinement.
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The folding behavior of various peptide sequences in

different MD force fields revealed significant and systematic

differences in the stability and formation propensity of domi-

nant secondary structure elements. Our observations suggest

that, in particular, the relative stabilities of helical and extended

conformations depend on a subtle balance of force-field

parameters. In addition, we found indications for different

sampling characteristics of the respective force fields, affecting

both the kinetics and convergence of the simulations.

It is likely that the discussed deviations in the structural

representations are less critical in protein simulations,

when starting from the folded native state. However, a signif-

icant bias for peptide and protein simulations on long time-

scales is expected (20). This also indicates the relevance

for simulations of folding intermediates, natively unfolded

proteins, and studies on peptide aggregation.

Concerning the treatment of electrostatics, it is nowadays

common practice to apply PME for biomolecular simula-

tions. However, care is required when employing PME in

conjunction with force fields and water models which were

originally developed using cutoff or reaction-field (OPLS,

GROMOS96) (2). In terms of secondary structure propensi-

ties, the peptides studied here revealed a tendency toward

sampling b-hairpin structures when employing PME

combined with the OPLS and GROMOS96 force fields.

In summary, for folding studies, a force-field bias cannot be

excluded, and from the current perspective there is no single

best-fit solution for peptide folding simulations with today’s

nonpolarizable force fields. We suggest a multiple force-field

or consensus approach, if computationally feasible to simu-

late, using more than one suitable force field to address

the particular question at hand, and whenever possible, to

compare the simulation results to direct experimental data.
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