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ABSTRACT A method is presented that
generates random protein structures that fulfil
a set of upper and lower interatomic distance
limits. These limits depend on distances mea-
sured in experimental structures and the
strength of the interatomic interaction. Struc-
tural differences between generated struc-
tures are similar to those obtained from experi-
ment and from MD simulation. Although
detailed aspects of dynamical mechanisms are
not covered and the extent of variations are
only estimated in a relative sense, applications
to an IgG-binding domain, an SH3 binding
domain, HPr, calmodulin, and lysozyme are
presented which illustrate the use of the
method as a fast and simple way to predict
structural variability in proteins. The method
may be used to support the design of mutants,
when structural fluctuations for a large num-
ber of mutants are to be screened. The results
suggest that motional freedom in proteins is ruled
largely by a set of simple geometric constraints.
Proteins 29:240–251, 1997. r 1997 Wiley-Liss, Inc.
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INTRODUCTION

Structural studies like X-ray crystallography and
NMR spectroscopy often provide insight into the
function of a protein. However, detailed questions on
many dynamic aspects of enzymatic mechanisms
such as regulation or substrate entry, remain unan-
swered when only static structures are available.
Dynamic processes are crucial steps in the function-
ing of enzymes. Therefore, detailed information on
the dynamics of a protein is necessary for a complete
understanding of its function.

Simulation techniques can help to obtain dynamic
information that cannot be provided by experimen-
tal techniques in a straightforward manner. A num-
ber of computational techniques has been developed
to gain information on protein dynamics and struc-
tural fluctuations. Molecular Dynamics (MD) and
Monte Carlo (MC) techniques are the most popular
ones. The accuracy of these techniques depends on

the protocols used (force-field, molecular representa-
tion etc.) and on the simulation length. Using the
most realistic force fields, at most a few nanoseconds
for a small protein in an aqueous environment can be
simulated within acceptable computer time.1,2 This
time scale is a few orders of magnitude smaller than
that on which most biological processes take place,
leaving the MD technique with a significant sam-
pling problem.3,4 The efficiency of MC calculations is
comparable to that of MD due to the presence of
internal barriers.5

Essential Dynamics

Essential Dynamics (ED),6–9 equivalent to Princi-
pal Component10,11 analyses of MD trajectories have
shown that most (more than 90%) of the simulated
atomic fluctuations usually can be described by a few
large-scale concerted motions. ED analyses of MD
trajectories determine the eigenvectors of the covari-
ance matrix of atomic fluctuations. Diagonalisation
of this matrix yields a set of eigenvectors and eigen-
values and the eigenvectors with largest eigenvalues
(usually a typical number of ten suffices) describe all
large-scale concerted fluctuations. If the eigenvec-
tors are seen as vectors that span a complex space
then the few ‘‘essential’’ eigenvectors with largest
eigenvalues span a subspace, the essential subspace,
and all large concerted motions take place in this
subspace. It is assumed that also the true configura-
tional space of most proteins contains a low-dimen-
sional subspace in which most positional fluctua-
tions take place. The essential subspace obtained
from simulation is an approximation of that sub-
space. ED analyses of MD trajectories have been
helpful in a number of cases to study functional
motions and predict mutants.7,8,12 As the trajectory
of each simulation can be considered as a diffusional
path through a part of the available space spanned
by the first few eigenvectors,13,14 the definition of
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individual eigenvectors spanning this subspace from
a simulation has not converged in the simulated
time,3,4 but the definition of the subspace itself
approximately has.15,16 This means that the high
eigenvalue-eigenvectors constructed from indepen-
dent (pieces of) simulation(s) are rotated with re-
spect to each other but only in a subspace with
limited dimension. The fact that the dynamic behav-
ior of simulated proteins can be captured by only a
few directions in configurational space can be used to
improve sampling efficiency in MD simulations by
driving a second MD run along eigenvectors ex-
tracted from an initial MD run.13,14,17

Currently the eigenvectors that approximate the
essential subspace can only be determined from
covariance analyses of long MD runs, requiring
considerable computational effort. In the present
study, however, an attempt is made to obtain these
most prominent collective structure variations in a
very simplified way.

Analogy With Structure Determination From
NMR Data

Structure solution by NMR is mainly based on the
conversion of force-field derived and experimentally
determined distances (from NOE data) into a set of
three-dimensional coordinates. The available data is
often insufficient to reach a unique solution, a prob-
lem that is usually circumvented by providing an
ensemble of structures. Large local conformational
differences between generated structures can repre-
sent structural flexibility but are often the result of a
lack of experimental data.18,19

Here we carry this idea a bit further. If all dis-
tances are known, and their upper and lower bounds
are set to physically realistic values, then the result-
ing structures are close to realistic configurations
that should, in principle, be reachable (during an
MD simulation). An ED analysis of such a set of
structures will, if the ensemble of generated struc-
tures is large enough, yield directions describing
fluctuations that are possible within the selected
distance limits. If the distance limits are chosen in a
sensible manner, then the observed fluctuations
correspond to realistic configurational freedom and
the ED results could be used to improve the sam-
pling during MD simulation.13,14,17

A technique has been developed to generate ran-
dom structures, limited by distance criteria. The
method has been applied to a number of proteins (the
B1 IgG-binding domain of streptococcal protein G,
the chicken a-spectrin SH3 domain, HPr from Esch-
erichia coli, bacteriophage T4 lysozyme and rat
testis calmodulin). These applications indicate that
the applied distance restrictions are compatible with
acceptable protein structures and that the differ-
ences between these structures can be used to ex-
tract information on the structural variability of the
proteins studied.

METHODS

Distance Bounds

The method in its current implementation is based
on a covariance analysis of randomly generated
structures that fulfil a set of distance constraints.
The first step is to measure all pairwise interatomic
distances in the (known) experimental structure of
the protein to be studied. The distance limits are now
set at this distance plus or minus D nanometers,
where D is small for tightly interacting atom pairs
and larger for weaker interactions. The different
types of interactions that were considered are listed
in Table I and distance limits D are given in Table II.
For all covalent 1–4 pairs, the upper and lower
bounds are corrected such that their distance is
always between the distances calculated in the ‘cis’
resp. ‘trans’ conformation. There is a special group
for atom pairs that are part of the same secondary
structure element to make sure secondary structure
(helix, strand) is preserved in the generated struc-
tures. This way, a total of 4697 distance restrictions
(3.3% of the total number of distances) could be
defined for the B1 IgG-binding domain. This number
was 4197 (2.5%) for SH3, 7333 (2.4%) for HPr, 14388
(1.5%) for calmodulin and 17818 (0.6%) for lysozyme,
respectively (see Table II for the distribution of
distances over the different classes).

To speed up the search for structures that fulfil all
distance criteria, upper and lower bounds are de-
fined for all atom pairs that are not explicitly men-
tioned in Table I. The range of freedom D given to
these pairs (0.5 nm) is much larger than for all other
pairs (Table II) (the lower distance limits for these
pairs are corrected such that they are not lower than
the sum of the van der Waals radii of the atoms
involved). If this upper limit is relaxed, the speed of
convergence is strongly reduced but the resulting
structures are virtually unchanged.

For all studied proteins except HPr, distances
were calculated from the experimental (X-ray) struc-
tures (pdb entries 1pgb,20 1shg,21 3cln22 and 2lzm,23

respectively). For HPr, a snapshot from an equili-
brated MD simulation24 (initiated from the NMR
structure with pdb entry 1hdn25) was used to extract
the distances. All structures were energy minimised
using the GROMOS26 force field before distances
were calculated. All nonpolar hydrogen atoms were
included within united carbon atoms (except for
aromatic hydrogens in the case of lysozyme). Polar
hydrogens were placed using standard GROMOS
hydrogen placement. This resulted in 535 atoms for
the IgG-binding domain (56 residues), 583 for SH3
(57 residues), 785 for HPr (85 residues), 1364 for
calmodulin (143 residues; residues 1–4 and 148 were
excluded, since they were not observable in the
crystallographic data) and 1703 for lysozyme (164
residues).
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The values given in Table II were obtained from an
analysis of the distance fluctuations in MD simula-
tions of the B1 IgG-binding domain of streptococcal
protein G. The limits were chosen such that the
majority of the MD-generated distances is contained
within the limits.

Generation of Structures

Having defined distance bounds for all pairs of
atoms, the next step is to find structures, other than
the reference structure, that fulfil all constraints. We
have developed a new, iterative procedure that gener-
ates structures fulfilling the requirement that all
distances fall between their lower and upper bound.
Starting from random coordinates, corrections are
applied iteratively to the positions of those atoms
that are involved in interatomic distances that vio-
late the upper or lower distance bound. Corrections
are applied such that for each violating pair, the
distance is put randomly between the upper and
lower bound (both atoms involved are displaced by
an equal amount). The sum of violations decreases
with the number of iterations. The procedure is
stopped when the sum of violations is zero. Conver-

gence is usually reached after 100–300 iterations of
N steps (N is the number of violations). Occasionally,
the algorithm does not converge to a structure
satisfying all distance constraints. When the num-
ber of iterations exceeds a criterion (typically 500),
the algorithm is stopped and restarted with a differ-
ent set of random starting coordinates. Since no
information on chirality is included in the distance
bounds, both mirror images are generated. The
generated D-amino acid enantiomers are converted
into the L form by simply taking the mirror image.
The method, called CONCOORD (from CONstraints
to COORDinates) resembles a method proposed by
Crippen27 but differs from it in the way the distance
corrections are applied.

Since initial coordinates are chosen randomly (from
a cube with edges of 2 nm) and distance corrections
are applied by choosing distances randomly between
their upper and lower bounds, bias in the results is
minimal. There is no correlation between any two
structures that are generated, and therefore, the
accessible space defined by the distance bounds is
more efficiently sampled than by procedures in which
such correlation is present (like MD).

TABLE I. Different Classes of Interacting Pairs

1–2 Pairs that are covalently bonded.
1–3 If atom 1 and 2 and atom 2 and 3 are covalently bonded.
Rings All atom pairs that are part of ring systems.
Side-chain double

bonds
ASN, GLN and ARG have one or more (partially delocalized) double bond(s) in the side chain. Tor-

sion angles around these bonds are restricted, making 1–4 pairs (atom 1–2, 2–3 and 3–4 are
covalently bonded) around these bonds more restricted than others.

Omega Distances between Ca atoms from neighboring residues depend on the v dihedral angle, which is
more rigid than the f and c torsion angles due to conjugation of the carbonyl bond along the
peptide bond, which causes the peptide unit to be rigid and planar (other 1–4 pairs defined by
this torsion angle also fall in this category).

Phi/psi Distances between backbone N atoms depend on c dihedral angles, whereas distances between
backbone carbonyl C atoms depend on f dihedral angles (other 1–4 pairs defined by f and c
also fall in this category). f/c restricted pairs are subdivided in three groups:

—Tight f/c: pairs of neighboring residues of which one is a proline and pairs that are part of the
same secondary structure element (helix or strand). Backbone dihedrals are relatively more
rigid in proline residues because the N and Ca are part of a ring system. Residues in helix and
strand conformation have well-defined positions in the Ramachandran plot, from which little
deviation is usually observed.

—Loose f/c: pairs of neighboring residues of which one is a glycine and pairs of residues in loop
regions. Glycine residues have relatively much rotational freedom around their f and c tor-
sion angles because there is no side chain that induces specific preference for certain f and c
combinations over others. Loop regions are known to have a relatively poorly defined struc-
ture, indicative of conformational flexibility.

—Other f/c: all other f/c restricted pairs.
1–4 Other 1–4 dihedral angle restricted pairs, involving side-chain atoms.
Secondary structure Pairs of backbone atoms that are part of the same secondary structure element (helix or strand)

and are not more than 4 residues apart.
Salt bridge Oppositely charged groups (all atoms from such a group are restricted) in close proximity (,4 Å).
Hydrogen bond Donor–acceptor distance should not exceed 3.5 Å, the hydrogen–acceptor should not exceed 2.5 Å

and the donor–hydrogen–acceptor angle should be minimally 90°.
Tight hydrophobic Pairs of atoms between which the interatomic distance is smaller than the sum of the van der

Waals radii of the involved atoms plus 0.5 Å that do not fall in one of the above categories.
Loose hydrophobic Identical to tight hydrophobic, but now pairs are included of which the interatomic distance is

smaller than the sum of the van der Waals radii of the involved atoms plus 1.0 Å.
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For all proteins studied, 500 structures were gen-
erated with the CONCOORD method. For the IgG
binding domain (56 residues), ,1 hour of CPU time
on a Pentium 100 processor was required (for com-
parison: a number of weeks would be required for an
MD simulation of 1 ns). The speed could be improved
by introduction of a cutoff radius for interatomic
distances or other methods that reduce the number
of pairs that need to be corrected every iteration
step. However, the method in its present implemen-
tation is fast enough for all practical purposes.
Starting from coordinates other than randomly cho-
sen ones may also enhance convergence speed, but
since the correction algorithm is particularly effi-
cient in the initial stage and because we want to
minimize the amount of bias in the results, we
preferred random starting coordinates.

All information on structural variability is stored
in the upper and lower distance bounds. Therefore, it
should in principle be possible to extract this informa-
tion directly from the distance bounds, without first
generating structures. We have not been able to
derive an analytical solution, but an approximation
is possible. Given an interaction function, a way to
gain insight in the most prominent modes of motion
is by diagonalization of the (mass-weighted) Hessian
matrix, as in Normal Modes (NM) analyses.28–30 The
matrix elements correspond to second derivatives of
the potential energy with respect to the coordinates.
The simplest way to implement distance restrictions
in such an interaction function is to model all pair
interactions by harmonic potentials, with the mini-
mum defined at the distance measured in the experi-
mental structure and the force constant inversely

proportional to the difference between upper and
lower distance bound (all masses are put to 1.0).
Eigenvectors of the Hessian matrix that have the
smallest eigenvalues (apart from those that corre-
spond to overall rotation and translation) are direc-
tions in configurational space that represent the
slowest vibrations of a molecular system. In a de-
tailed force field, these directions have been shown to
be similar to the eigenvectors with largest eigenval-
ues from Principal Component analyses of MD trajec-
tories,15,31 although normal modes have the restric-
tion of harmonicity.

Starting from the same distance bounds, diagonal-
ization of the Hessian matrix will yield results that
are somewhat different from those obtained from
diagonalisation of the covariance matrix of posi-
tional fluctuations from generated structures for a
number of reasons. First, during generation of struc-
tures, some distance bounds will never be reached
because they are excluded by the presence of other
distance limits. Therefore, bound smoothing on the
triangulation level32 had to be performed before
calculation of the Hessian matrix. Second, distribu-
tions of distances are assumed to be Gaussian in the
harmonic approximation, whereas no such assump-
tion is made during the generation of structures in
CONCOORD, where the distance distribution may
even be asymmetric.

Analysis Techniques

Essential Dynamics6 analyses were used for com-
parison of structural freedom in proteins. The method
consists of diagonalization of the covariance matrix
C of atomic fluctuations, after removal of overall

TABLE II. Parameters Used in the CONCOORD Method*

No. of atoms
pgb
535

SH3
583

HPr
785

cal
1364

lys
1703

No. Type D (nm) No. of pairs

1 1–2 0.002 541 592 792 1376 1723
2 1–3 0.005 780 855 1137 1962 2510
3 Ring 0.01 68 88 34 73 629
4 double bond 1–4 0.01 16 36 40 96 172
5 Omega 1–4 0.01 220 224 336 568 652
6 Tight phi/psi 1–4 0.02 272 190 422 762 893
7 Loose phi/psi 1–4 0.04 120 192 180 265 288
8 Other phi/psi 1–4 0.03 32 56 44 72 76
9 Other 1–4 0.04 254 276 355 624 745

10 Sec. str. 0.05 1556 596 2776 6622 7471
11 Salt bridges 0.075 8 11 1 2 39
12 Hydrogen bonds 0.05 47 60 54 102 86
13 Tight hydrophobic 0.05 278 353 448 741 963
14 Loose hydrophobic 0.1 505 665 714 1132 1571
Total 4697 4194 7333 14388 17818

15 All other pairs 0.5

*Values indicate the degree of freedom in interatomic distances relative to the experimental structures.
The number of distances for all proteins studied in each category are listed.
Abbreviations: pgb, the B1 IgG-binding; cal, calmodulin; lys, lysozyme.
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translation and rotation:

Cij 5 7(xi 2 7xi8)(xj 2 7xj8)8 (1)

where x are cartesian atomic coordinates. Resulting
eigenvectors are directions in configurational space
of which the corresponding eigenvalues give the
mean square fluctuation of the displacement in each
direction. ED analyses can be applied to any (sub)set
of coordinates of the studied molecular system. Only
Ca atoms were included in ED analyses presented
here because it has been shown6,8,15 that this ap-
proach best detects the large-scale concerted mo-
tions in proteins.

The software for the generation of structures will be
available on the WWW (http://rugmd0.chem.rug.nl) and
is implemented in the WHAT IF33 package. ED and
all other structural analyses were performed using
an interface in the molecular modeling package
WHAT IF.33 Secondary structure analyses and acces-
sible surface calculations were performed with
DSSP.34 Dihedral angle criteria were taken from
PROCHECK.35

RESULTS

All CONCOORD structures were subjected to a
number of structural analyses to assess how physi-
cally realistic the generated structures are (Table
III). The same analyses were performed on struc-
tures sampled by MD (for simulation details: the
IgG-binding domain16 (1 ns), SH39 (1 ns), HPr24 (300
ps), calmodulin36 (500 ps), and lysozyme (submitted
for publication) (1 ns). All MD simulations were
performed in explicit solvent at room temperature.
Comparison with crystal structures and MD shows

that in CONCOORD, with the present set of param-
eters, structures generally are more similar to their
respective experimental structure than in MD. There
is good correspondence between the values obtained
from MD and CONCOORD for all properties taken
into account. Mean square atomic fluctuations of Ca

atoms are plotted in Figure 1 for both CONCOORD
and MD. There is reasonable qualitative correlation
between curves obtained from CONCOORD and MD
(correlation coefficients between 0.501 and 0.871).

For all molecules studied the ensembles of confor-
mations generated by MD and CONCOORD were
subjected to essential dynamics analyses. In all
cases only a few eigenvectors were found with signifi-
cant eigenvalues. These eigenvalues are shown in
Figure 2 (eigenvalues have been sorted by decreas-
ing value). Eigenvalue curves from both techniques
are equally steep for all proteins, indicating that also
from the CONCOORD results only a few collective
fluctuations emerge with appreciable freedom.

Inner products between eigenvectors from MD and
CONCOORD were calculated to evaluate whether
eigenvectors obtained from both techniques repre-
sent similar fluctuations. Squared inner products
are shown for every pair of eigenvectors from MD
and CONCOORD for the B1 IgG-binding domain in
Figure 3a. All high inner products are found close to
the diagonal, meaning that for both techniques,
directions in configurational space are ordered simi-
larly with respect to the amount of fluctuation, that
is, directions that show large fluctuations in MD also
show relatively large fluctuations in CONCOORD,
and vice versa. Figure 3b shows the squared inner
products between eigenvectors obtained from two
halves of an MD simulation of 1 ns. The overlap

TABLE III.Average Geometrical Properties for Structures Generated by MD and CONCOORD, Compared
With the Values Obtained From Experimental Structures

RMSD NRC HBO ACC GYR DIH QUAL ENE

pgb PDB 0.00 8.0 39.0 3391 1.021 1.0 20.083 22241
pgb MD 1.43 9.6 44.2 3840 1.023 2.68 20.662 22005
pgb CONCOORD 1.04 7.3 42.3 3673 1.023 1.86 20.337 22140
SH3 PDB 0.00 14.0 38.0 3665 1.012 3.0 20.668 22975
SH3 MD 1.29 14.8 40.0 4051 1.026 2.03 21.231 22816
SH3 CONCOORD 0.81 13.3 44.5 3858 1.001 2.94 20.639 22811
HPr PDB 0.00 12.0 74.0 4840 1.146 5.0 20.553 24237
HPr MD 1.39 14.1 67.9 5031 1.147 5.09 20.741 24252
HPr CONCOORD 0.90 12.1 73.2 4892 1.126 4.52 20.540 24223
cal PDB 0.00 20.0 110.0 9355 2.095 5.0 20.160 27428
cal MD 2.65 21.3 99.4 9851 2.113 10.42 20.728 27505
cal CONCOORD 1.93 17.9 108.9 9788 2.091 5.46 20.509 27484
lys PDB 0.00 16.0 122.0 8675 1.590 5.0 20.228 210869
lys MD 1.81 20.4 122.3 8863 1.562 7.21 20.953 210740
lys CONCOORD 1.57 19.7 124.8 8585 1.581 7.91 20.891 210493

Abbreviations: pgb, the B1 IgG-binding domain; cal, calmodulin; lys, lysozyme; RMSD, root mean square deviation, expressed in Å;
NRC, number of residues in random coil conformation, according to DSSP34 ; HBO, number of main chain hydrogen bonds (DSSP);
ACC, total solvent accessible surface in Å2 (DSSP); GYR, radius of gyration in nm; DIH, number of residues in unfavorable regions in
Ramachandran plot35,44; QUAL, WHAT IF index indicating the normality of packing45; ENE, potential energy after energy
minimization in the GROMOS force field.
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between the two eigenvector sets from MD is similar
to that between MD and CONCOORD. In Figure 3c
the same comparison is made for two sets of struc-
tures obtained by CONCOORD. Two independent
sets of 250 structures were used in the ED analyses.

Figure 3 shows that the overlap between MD and
CONCOORD is especially high in the essential sub-
space (defined arbitrarily as the subspace spanned
by the 10 eigenvectors with largest eigenvalues). The
overlap of the essential subspaces from MD and
CONCOORD has been evaluated in a more quantita-
tive way because the essential subspace is of particu-
lar interest (about 80% of the observed structural
fluctuation usually occurs in this subspace). Figure 4
shows the mean cumulative squared inner products
between eigenvectors (from MD and CONCOORD)
spanning this subspace and the first 50 eigenvectors
from independent MD/CONCOORD runs, for the
IgG binding domain. Overlap is concentrated in the
initial part. For example, 80% of overlap with the
first 10 CONCOORD eigenvectors is reached within
the first 20 MD eigenvectors, indicating that all
essential directions found by CONCOORD are also
accessible in MD. The overlap between eigenvectors

from two independent MD runs is very similar to the
overlap between CONCOORD and MD, whereas the
overlap between two independent CONCOORD runs
is very close to the maximum possible overlap,
indicating an almost complete convergence.

The mean squared inner products between the 10
eigenvectors with largest eigenvalues from MD and
CONCOORD are given in Table IV, for all proteins
studied. The overlap between the essential sub-
spaces obtained by MD and CONCOORD is compa-
rable to the overlap obtained from the two halves of
each MD trajectory. A typical overlap of ,0.5 is
obtained for all proteins (a value of 1.0 would be
obtained if the two sets are identical). Overlap
between eigenvectors obtained from two parts of the
clusters produced by CONCOORD is significantly
larger for all proteins.

Overlap of the 10 CONCOORD eigenvectors with
largest eigenvalues with the 10 lowest frequency-
eigenvectors obtained from diagonalization of the
Hessian matrix was calculated to be 0.678 for the B1
IgG-binding domain (Ca components were extracted
from the eigenvectors of the Hessian matrix and the
obtained vectors were renormalised before the analy-

Fig. 1. Mean square positional fluctuation of Ca atoms. The correlation coefficient between the
curves obtained from MD and CONCOORD is shown next to the figures.
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sis). This value is somewhat smaller than the over-
lap between eigenvectors obtained from two clusters
of CONCOORD structures (0.866), indicating that
small deviations from the converged CONCOORD
results emerge in this approximation. The overlap of
the Hessian eigenvectors with MD eigenvectors was
calculated to be 0.486. This is slightly lower than the
overlap of the eigenvectors obtained from CONCOORD
structures with MD eigenvectors (0.532).

The difference in the way the conformational space
is sampled in CONCOORD and MD is illustrated in
Figure 5. In MD (Fig. 5a), a single path is followed
that resembles a random walk,13,14,17 whereas in
CONCOORD (Fig. 5b), a random sampling takes
place, with each position independent from the previ-
ous one. To investigate in more detail to which extent
the modes of motion predicted by CONCOORD are
accessible in MD, an extended MD simulation with
constraints on the two CONCOORD eigenvectors
with largest eigenvalues was performed. The way in
which these constraints are applied makes it pos-
sible to efficiently assess the portion of the conforma-
tional space that is accessible to MD.13,14,17 As can be

seen from Figure 5c, the region sampled by this
technique is similar to the region sampled by
CONCOORD.

Structures collected along the most important
directions defined by CONCOORD are shown in Figure
6 for calmodulin and lysozyme. The CONCOORD
eigenvector with largest eigenvalue for calmodulin
corresponds to a combination of a bend and a twist of
the interdomain helix, resulting in a rotation of one
domain with respect to the other (Fig. 6a). From
experiments (hydrogen exchange measurements,37

NMR relaxation data38 and NMR NOE data39 from
which disorder in the set of NMR structures40

emerged), the helix is known to break in the middle,
which was also observed in MD and Normal Modes
analyses.36

For lysozyme, the CONCOORD eigenvector with
second largest eigenvalue corresponds to a fluctua-
tion that is similar to structural differences that
have been observed by crystallography of a number
of mutants41 (Fig. 6b). The main domain fluctuation
consists of a rotation of the two domains with respect
to each other, initiated by a combined twisting and

Fig. 2. Eigenvalues obtained from MD trajectories and ensembles of structures generated by
CONCOORD. Only the 50 largest eigenvalues are shown out of 168 (pgb, B1 IgG-binding domain),
171 (SH3), 255 (HPr), 429 (cal), and 492 (lys), respectively.
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bending of the interdomain helix. The difference
between the most open41 and the most closed42 X-ray
structure along this rotation axis is as much as 49°.
The angular difference between the most open and
most closed CONCOORD structure was 33°; for MD
this value was 28°. Both CONCOORD and MD do
not reach the most open experimental configuration.

DISCUSSION

The results show that there are many similarities
between MD and CONCOORD. However, there is
also a number of apparent discrepancies. In Figure
1, a number of peaks are only observed in the curves
obtained from CONCOORD and not from MD, or vice
versa. The broad peak near residue 48 (located in the
turn connecting b strands 3 and 4) for the B1
IgG-binding domain in CONCOORD that is not
present in the curve from MD represents fluctua-
tions that are dominating the CONCOORD eigenvec-

tor with largest eigenvalue. This direction is not
present within the first two eigenvectors from MD,
but is represented 75% by the first six MD eigenvec-
tors, indicating that this motion is also accessible in
MD. Likewise, the peak near residue 39 for calmodu-
lin (a surface loop connecting helices 2 and 3) in MD
is mostly the result from the motion along the first
MD eigenvector. This mode of motion shows little
overlap with the first five eigenvectors of CONCOORD
but is contained for 75% in the first 15 CONCOORD
eigenvectors, indicative of significant fluctuation in
the cloud of CONCOORD structures.

The similarity of the MD and CONCOORD results
is remarkable, since both techniques differ on sev-
eral fundamental points. First, the interaction func-
tion between particles is much more complex in MD
than in CONCOORD, in terms of the number of
parameters that determine the amount and kind of
fluctuations that are accessible. In the current imple-

Fig. 3. Squared inner product matrices for the B1 IgG-binding
domain. A: Eigenvectors from MD (1 ns, y-axis) are compared to
those from CONCOORD (500 independent structures, x-axis). B:
Eigenvectors from the two halves of the MD run (500 ps each) are
compared to each other. C: The same is done for CONCOORD
(250 independent structures were used in each analysis).
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mentation, a total of only 15 parameters is sufficient.
Second, in CONCOORD only short-range interac-
tions (roughly smaller than 6 Å) within the protein
make a serious contribution, whereas in MD long-
range interactions and interactions with solvent are
also included.Additionally, all interactions are imple-
mented in the form of distance constraints in
CONCOORD. In MD, usually only bond lengths are
described this way. Another important difference
between MD and CONCOORD is the way in which
structures are generated. In MD, the equations of
motions are integrated numerically to yield a unique
path in configurational space, where each structure
is a deterministic result of the previous one. In
CONCOORD, structures are generated by a random
search method that searches for solutions in a pre-
defined coordinate space. Incomplete sampling is one
of the dominating reasons for errors in the definition

of an essential subspace from MD simulation.3,4,16

The fact that the overlap between CONCOORD and
MD is similar to the overlap between different parts
of MD simulations suggests that these errors are of
the same order of magnitude as the errors made in
CONCOORD due to a too simple model.

The differences between MD and CONCOORD
imply that not all the data that can be obtained by
MD can also be obtained by CONCOORD. Dynamic
(time-dependent) information, for example, cannot
be derived from CONCOORD data. Also, the ampli-
tude of predicted fluctuations can only be derived in
a relative sense, that is, the method only predicts
certain modes to be more accessible than others. For
example, the hinge bending mode in lysozyme was
not sampled in the same range as in experiment.
However, this also holds for an MD simulation of 1
ns. The local cause of a large overall structure
variation cannot be deduced reliably from an analy-
sis of CONCOORD results. The main motion in
calmodulin, for example, is known to be the result of
the breaking of the interdomain helix. Such a rigor-
ous event is not allowed within the distance bounds
as they are defined now. However, it is interesting to
note that even in the case of such large conforma-
tional changes, the first stage of such changes is
already sampled and, in the case of calmodulin,
emerges as the fluctuation with largest amplitude.

The comparison of eigenvectors obtained from
diagonalization of the Hessian matrix with those
from CONCOORD and MD indicates that even with-
out the generation of structures, a rough approxima-
tion can be obtained of the subspace in which all
significant backbone motions take place. Diagonaliza-
tion of the Hessian matrix is faster than the genera-
tion of a large enough set of structures by CONCO-
ORD for a covariance analysis. In most cases the
generation of structures is to be preferred, however,
since the produced structures can also be used for
other analyses, and the CONCOORD eigenvectors
show better overlap with MD.

The parameters used for CONCOORD (Table II)
were generated for the B1 IgG-binding domain, but
they were applicable without modifications for the
other proteins and gave meaningful results. The
values in Table III indicate that a set of physically
realistic structures has been generated by CONCOORD
for all proteins studied.

Structural Variation in Clusters
of NMR Structures

A significant level of correlation between essential
directions defined from MD and from clusters of
NMR structures has been found for a number of
proteins (unpublished observations). For the B1
IgG-binding domain of streptococcal protein G for
instance, the summed square inner products of the
10 eigenvectors with largest eigenvalues from MD
and NMR was found to be 0.35, comparable to the

Fig. 4. Cumulative mean square inner products between the
10 eigenvectors with largest eigenvalues obtained from MD/
CONCOORD and all eigenvectors obtained from different MD/
CONCOORD runs. After division by 10, all curves converge to 1.0,
since every eigenvector from one set is contained in the complete
set of vectors from another set. The solid line corresponds to the
maximum obtainable overlap. pgb denotes the B1 IgG-binding
domain.

TABLE IV. Mean Squared Inner Products Between
Subsets Containing the 10 Eigenvectors With

Largest Eigenvalues

Protein

Mean cumulative square inner product
MD–

CONCOORD
MD–
MD

CONCOORD–
CONCOORD

pgb 0.532 0.560 0.866
SH3 0.446 0.494 0.809
HPr 0.416 0.387 0.904
cal 0.440 0.532 0.802
lys 0.454 0.487 0.910

The first column contains a comparison between MD and
CONCOORD, the second column compares two halves of each
MD trajectory, which is done in the third column for CONCOORD.
pgb denotes the B1 IgG-binding domain.
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values in Table IV. In a recent study, a similar
observation was reported43 for BPTI. The amount of
dynamic information that can be derived from NMR/
NOE data has been subject of discussion. It has been
argued18,19 that the amount of information usually
used for structure generation from NMR data is
generally too limited to yield information on the
conformational flexibility of macromolecules. In line
with the results presented in this paper, however,
methods that provide a set of protein structures in
which all structural constraints are fulfilled can be
expected to give insight into the conformational
flexibility of these molecular systems. The informa-
tion derived from a cluster of NMR structures is only
partially the result of the experimental data used in
the analysis. In NMR structure refinement, not only
the experimentally derived (distance) restrictions
are used for the analyses, also knowledge of, for

Fig. 5. a (top): Projection of the MD trajectory of the IgG
binding domain and b (middle): the collection of CONCOORD
structures onto the planes defined by the two eigenvectors with
largest eigenvalues from both techniques. c (bottom): Projection
of CONCOORD (small circles) and extended MD (continuous line)
structures onto the plane defined by the two CONCOORD eigen-
vectors with largest eigenvalues.

Fig. 6. Stereo representation of extreme structures (thin line
and thin dashed line) along CONCOORD eigenvectors, together
with average structures (bold line). A: Calmodulin, eigenvector 1.
B: Lysozyme, eigenvector 2.
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instance, bond lengths and angles is usually in-
cluded to generate structures. The collection of these
restraints restricts the generated configurations to
such an extent that meaningful information about
(the few) important collective degrees of freedom
may be derived from such analyses.

CONCLUSIONS

We have shown that the major fluctuations in
protein structures that are predicted by CONCOORD
are concentrated in a few directions in configura-
tional space. Apparently, the bounds on interatomic
distances, which are on one hand defined by the
connectivities in the structure (covalent bonds) and
on the other hand by the way the protein is folded
(hydrogen bonds, salt bridges, hydrophobic con-
tacts), restrict the conformational freedom of these
systems such that only a few collective degrees of
freedom fluctuate significantly. Apart from the disad-
vantages that no time dependent information is
obtained and that the extent and structural cause of
the fluctuations cannot be determined, an almost
converged description of the most important collec-
tive degrees of freedom is obtained when only a
limited number of structures has been generated. It
has been shown that it is not necessary to use
sophisticated atomic interaction functions to obtain
basic knowledge about the structural fluctuations of
proteins in solution. The sum of all interactions in
proteins makes fluctuations to be concentrated in a
few collective degrees of freedom which can be
obtained by a straightforward method. The minimal
computational effort involved allows for the screen-
ing of fluctuations in many configurations, which
could, for example, facilitate the design of mutants,
or enhance the capabilities of homology prediction.
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on collective motions in globular proteins. J. Mol. Biol.
234:1207–1217, 1993.

12. Aalten, D., Jones, P., Sousa, M., Findlay, J. Engineering
protein mechanics: inhibition of concerted motions of the
cellular retinol binding protein by site-directed mutagen-
esis. Prot. Eng. 10:31–38, 1997.

13. Amadei, A., Linssen, A.B.M., De Groot, B.L., Van Aalten,
D.M.F., Berendsen, H.J.C. An efficient method for sam-
pling the essential subspace of proteins. J. Biom. Str. Dyn.
13(4):615–626, 1996.

14. De Groot, B.L., Amadei, A., Scheek, R.M., Van Nuland,
N.A.J., Berendsen, H.J.C. An extended sampling of the
configurational space of HPr from E. coli. Proteins: 26:314–
322, 1996.

15. Van Aalten, D.M.F., De Groot, B.L., Berendsen, H.J.C.,
Findlay, J.B.C., Amadei, A. A comparison of techniques for
calculating protein essential dynamics. J. Comp. Chem.
18:169–181, 1997.

16. De Groot, B.L., Van Aalten, D.M.F., Amadei, A., Berendsen,
H.J.C. The consistency of large concerted motions in pro-
teins in Molecular Dynamics simulations. Biophys. J.
71:1554–1566, 1996.

17. De Groot, B.L., Amadei, A., Van Aalten, D.M.F., Berendsen,
H.J.C. Towards an exhaustive sampling of the configura-
tional spaces of the two forms of the peptide hormone
guanylin. J. Biomol. Str. Dyn. 13:741–751, 1996.
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