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ABSTRACT The dynamics of collective protein
motions derived from Molecular Dynamics simula-
tions have been studied for two small model proteins:
initiation factor | and the B1 domain of Protein G.
First, we compared the structural fluctuations, ob-
tained by local harmonic approximations in differ-
ent energy minima, with the ones revealed by large
scale molecular dynamics (MD) simulations. It was
found that a limited set of harmonic wells can be
used to approximate the configurational fluctua-
tions of these proteins, although any single har-
monic approximation cannot properly describe their
dynamics.

Subsequently, the kinetics of the main (essential)
collective protein motions were characterized. A
dual-diffusion behavior was observed in which a
fast type of diffusion switches to a much slower type
in a typical time of about 1-3 ps. From these results,
the large backbone conformational fluctuations of a
protein may be considered as “hopping” between
multiple harmonic wells on a basically flat free
energy surface. Proteins 1999;35:283-292.
© 1999 Wiley-Liss, Inc.
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INTRODUCTION

The mechanical and dynamical characterization of the
conformational space of proteins is a challenging task for
molecular biophysics since it is a prerequisite for the
understanding of protein behavior and folding processes.
Up to now, such investigations have been limited even
from a computational point of view, since the high dimen-
sionality of a protein’s configurational space, and the
complexity of the model potential which is necessary to
describe the protein-protein and protein-solvent interac-
tions, make the computational costs enormous. Recently, a
set of equivalent theoretical methods have been pro-
posed!2 to analyze protein molecular dynamics (MD) trajec-
tories in order to separate the mechanical-dynamical
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constraints from the “essential degrees of freedom” that
are responsible for all the relevant structural transitions
in these molecules. In these methods the covariance ma-
trix of the atomic positional fluctuations obtained from a
MD trajectory is constructed. Every linear constraint in
the configurational space is associated with an eigenvector
of this matrix with a (nearly) zero eigenvalue, and the only
relevant directions of fluctuation are the eigenvectors with
large eigenvalues.? The orthonormal set of eigenvectors
can be used as a new basis set for generalized coordinates.
Typically, for a protein, only about ten eigenvectors (essen-
tial eigenvectors) are sufficient to describe the most large
concerted motions in the system, and the rest can be
considered as approximated constraints responsible for
small “harmonic” fluctuations. This procedure is equiva-
lent to a principal components analysis of the protein
trajectory in configurational space. In contrast with quasi-
harmonic analysis®- we do not require a harmonic approxi-
mation at all, and any subset of atoms can be used.

This approach (often referred to as essential dynamics)
has been applied to several different proteins®’-° always
revealing a low-dimensional essential subspace, and in
some cases the essential motions obtained could be related
to functional properties of the protein. The existence of
such a low-dimensional essential subspace proved to be
useful in the design of a new procedure (essential dynam-
ics sampling) able to provide a conformational sampling
which is more efficient than the one obtained by usual
MD.10-12 In the present paper, we investigate two small
proteins, initiation factor 12 and B1 domain of protein G,4
characterizing the mechanics and the kinetics in the
essential subspace in detail.

The first part of the paper concerns the comparison of
the configurational properties obtained from harmonic
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Fig. 1. Squared inner product matrices (all plots are for the B1 domain
of protein G). a: Eigenvectors obtained from two halves of the 1.2 ns MD
trajectory compared to each other. b: Eigenvectors obtained from the
Hessian matrix built at the initial position compared to eigenvectors
obtained from the 1.2 ns MD trajectory. c: Eigenvectors obtained from the
combination of all (20) Hessian calculations compared to eigenvectors

analyses of multiple minima with those from MD. Sim-
ilar to early studies of energy landscapes of Lennard-
Jones fluids by Stillinger and coworkers,'> configurations
were extracted from MD simulations which were subse-
quently energy-minimized. We collected different energy
minima of the two test proteins, located in different
positions of the essential subspace. A local harmonic
approximation as in Normal Modes Analysis (NMA)6-18
was utilized to compare the different minima to each
other. Such kind of comparison has been presented on
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obtained from the 1.2 ns MD trajectory. d: Eigenvectors obtained from the
combination of a set of 10 closely related Hessian calculations compared
to eigenvectors obtained from the 1.2 ns MD trajectory. e: Eigenvectors
obtained from the combination of a set of 10 Hessian calculations started
from MD structures, 100 ps apart, compared to eigenvectors obtained
from the 1.2 ns MD trajectory.

proteins by other investigators,'21 but with two ma-
jor differences. First, we use the true Hessian (not in-
cluding the masses) to describe the local harmonic behav-
ior of the system. Second, we include a shell of water
in the Hessian calculation in order to approach a physical
system more closely than calculations in vacuo do. It
was found that the essential subspace obtained by MD
showed a high degree of overlap with the one obtained by
combining the harmonic dynamical behavior of multiple
minima.



KINETIC MODEL OF PROTEIN MOTION 285

100 —

120 —

140 —

160 —

'I'I'I'I'I'I'I'I%
20 40 60 80 100 120 140 160

Figure 1. (Continued.)

The second part of this paper concerns the study of the
kinetics in the essential subspace. Starting from a common
position for the first three essential coordinates, many
different runs of MD were produced in order to calculate
the average square displacement in time along these
coordinates. As previously observed,' we found a diffusion-
like behavior for the essential coordinates in the time
range studied (up to 30 ps) with a deviation within the first
two picoseconds.

In this paper, we propose a simple diffusion model (just
beyond the Einstein-Smolukowsky approximation) which
seems to properly describe these data, and that in combina-
tion with the results on the local harmonic fluctuations,
suggests as a possible simple physical model a slow
diffusion between multiple harmonic wells for the kinetics
in the essential subspace.

METHODS

All simulations were performed with the GROMACS
simulation package.?? A modification?® of the GRO-
MOS872* force field was used with additional terms for
aromatic hydrogens?® and improved carbon-oxygen interac-
tion parameters.?® SHAKE?® was used to constrain bond
lengths, allowing a time step of 2 fs. The essential dynam-
ics analyses were performed always only on C-alpha
coordinates.

B1 Domain of Protein G

For the B1 domain of protein G we have used a simula-
tion of 1.2 ns. The initial configuration for this simulation
was the crystallographic structure (PDB entry 1pgb4).
Prior to simulation, the protein was solvated in a box of
SPC?” water molecules. Four sodium ions were added to
compensate for the net negative charge of the molecule
(the ions were added by replacing water molecules at the
lowest electrostatic potentials), resulting in an electrically

neutral box containing 1,555 water molecules adding up to
a total of 5,231 atoms. One hundred (100) steps of energy
minimization using a steepest descents algorithm and a
MD simulation of 10 ps with position restraints on the
protein (force constant of 1,000 kJ mol~! nm~2) were
performed for structural regularization and an initial
equilibration of the water molecules. A twin-range cut-off
method was used for non-bonded interactions. Lennard-
Jones and Coulomb interactions within 1.0 nm were
calculated every step, whereas Coulomb interactions be-
tween 1.0 and 1.35 nm were calculated every ten steps.
This simulation was performed at fixed volume after an
isobaric equilibration. The temperature was regulated by
weak coupling to a temperature bath?® (r = 0.1 ps) with a
reference temperature of 300 K.

For the study of diffusional properties, another 50
simulations of 100 ps were performed from conformations
produced by a MD simulation of 50 ps, taking structures 1
ps apart. For each of these simulations, different initial
velocities were chosen from a Maxwellian distribution to
make sure that independent trajectories were generated.
The last 50 ps from each of these simulations were added
to pieces of trajectory collected from the 1.2 ns simulation
and used for the analysis of the diffusional properties of
the essential degrees of freedom (see Appendix B).

From the simulation of 1.2 ns ten structures were
extracted, 100 ps apart. From these conformations, the
protein and the closest 166 water molecules were selected.
Another ten of such structures were extracted from a
simulation of 10 ps, each 1 ps apart. Each structure was
energy-minimized without constraints with a conjugate
gradients algorithm until the maximum force was below
0.01 kJ mol! nm~t. For each minimized structure a
Hessian matrix was built and diagonalized, and alpha
carbon-only eigenvectors were constructed as described in
Appendix A. Subsequently, ensembles of alpha carbon
structures were generated for each energy minimum from
normally distributed displacements corresponding to the
local harmonic behavior of the system at a temperature of
300 K. These ensembles of structures were fitted onto a
common reference configuration, also used to fit the MD
trajectories, in order to remove translational/rotational
motions and obtain completely comparable evaluations of
the eigenvectors/eigenvalues of different minima and of
the simulations.

IF1

For IF1 protein (Initiation Factor 1) the first structure of
the 1ah9 protein databank entry was selected as starting
point. The protein was solvated in a pre-equilibrated box of
SPC water and four water molecules with highest electro-
static potential were replaced by chloride ions, resulting in
an electrically neutral cubic box (a = 4.962 nm) containing
3,468 water molecules and four counter ions for a total of
11,119 atoms. After 200 steps of energy minimization
using a steepest descent algorithm, a constant volume
molecular dynamics run was initiated using a non-bonded
cutoff of 0.9 nm for both Lennard-Jones and Coulomb
potentials. The pair lists were updated every ten steps. A
constant temperature of 300 K was maintained by cou-
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pling to an external bath using a coupling constant
(r = 0.002 ps) equal to the integration time step. In this
manner, 1.350 ns of simulation were produced, of which
only the last 1.0 ns of trajectory was used for essential
dynamics analysis. Structures close to one another in the
3-dimensional space defined by the first three principal
eigenvectors were chosen as starting points for diffusional
studies. From each of these configurations an additional 30
ps of simulation was performed using either a weak
temperature coupling (r = 0.1 ps) or tight temperature
coupling (r = 0.002 ps) to an external bath set at 300 K.
After establishing that the type of temperature coupling
had no measurable influence on the diffusional properties,
a total of 101 pieces (48 produced with weak coupling and
53 with tight coupling) were combined, for a total of 3.03
ns. Each of the 101 runs used a different set of initial
velocities, and for each configuration only the last 20 ps of
trajectory were used to derive diffusional properties: i.e.
the average mean square displacement along the first
three principal eigenvectors.

To characterize the local harmonic behavior of the
system, a set of configurations distributed in different
regions of the 3-dimensional space defined by the first
three eigenvectors was chosen. Each of the selected protein
configurations was extracted from the trajectory along
with a shell of 300 water molecules and minimized using a
combination of steepest descent and conjugate gradients
algorithms until the maximum force was less than 0.01 kJ
mol~1 nm~1.

RESULTS AND DISCUSSION
Local Harmonic Wells and MD Fluctuations

As a way to compare two eigenvector sets, A and B,
obtained from two different covariance matrices, one can
construct the inner product matrix, where each element
corresponds to the inner product between the it" eigenvec-
tor of set A and the j® eigenvector of set B. A preliminary
comparison between the sets corresponding to the two
halves of the 1.2 ns trajectory of the B1 domain of protein G
was carried out (Fig. 1a). As previously observed,?® and
also found here, no large inner products were found far
from the diagonal, in particular the essential subspace
(roughly the first 10 eigenvectors) and the far near con-
straints (eigenvectors beyond the 50th or the 60th) were
completely orthogonal (zero inner product). Differences
between the two sets were confined to subspaces defined by
contiguous eigenvectors. This result shows that a few
hundred picoseconds are enough to reach an approximate
convergence for the subspaces definition although the
individual eigenvectors require longer time to be properly
defined. In what follows, the eigenvectors extracted from
this 1.2 ns trajectory were used as an approximation of the
true conformational space of the protein and as reference
set of vectors in other comparisons.

Comparison of this set of eigenvectors with that ob-
tained from the Hessian matrix of the initial configuration
of the trajectory, the X-ray structure, showed that there
was a much larger spread in the overlap between these two
sets (Fig. 1b) than between the two halves of the trajectory.
However, a significant overlap still remains concentrated

around the diagonal, especially in the essential subspace.
Similar results were found for the other energy minima
implying that the dynamic behavior of a protein cannot be
properly described by any individual local harmonic ap-
proximation, in agreement with previous observations.'?2
To test whether the “dynamical” essential subspace could
be approximated by an average over essential subspaces of
various harmonic wells, we combined the C-alpha fluctua-
tions from twenty harmonic wells. Comparison of the
resulting eigenvectors with the reference set (Fig. 1c)
showed a significant improvement in the overlap between
the sets, which was now similar to that obtained in the
control (Fig. 1a). Note that this combination of fluctuations
(each with respect to the local average) excluded the
difference between (local) averages.

To investigate whether this improvement in overlap
depends on the distribution of the minima in configura-
tional space, the same kind of comparison was performed
between the 10 minima that are close in configurational
space (starting conformations extracted from an MD simu-
lation, at intervals only 1 ps apart) and the 10 others that
are much further apart (100 ps intervals) with the refer-
ence set from MD. The corresponding inner product matri-
ces (Fig. 1d and 1e) show that the two 10 minima sets have
an overlap with the reference MD set which is for the
essential subspace (first 10 or 20 eigenvectors) comparable
to that of the combined 20 minima (Fig. 1c). This indicates
that averaging over a limited set of minima increases the
overlap with MD significantly, and that this increased
overlap occurs for the more closely related minima and for
the more distant minima. Finally, we compared (Table 1)
the different essential subspaces using as a measure of
overlap between sets the average square norm uZ;

10 10
2 E (nAi'T]Bj)z
i=1j=1

2 —
. 10
with ma; and mg; the i and j eigenvectors of set A and B,
respectively. Table I clearly shows that the different essen-
tial subspaces are rather similar except for the case of the
essential subspace obtained for a single well, in which case
the overlap is significantly lower. Asimilar analysis on IF1
protein showed, in the same way, that the combination of
the essential subspaces of a limited set of energy minima
largely reproduced the essential subspace obtained from
the MD trajectory (data not shown). Hence, with respect to
MD simulations with time lengths in the order of one
nanosecond, a comparable convergence of the dynamical
essential modes may be obtained from a combination of a
limited number of local minima, even if they are not widely
spread in configurational space.

Kinetics in the Essential Subspace

To investigate the dynamics of the configurational fluc-
tuations obtained by MD simulations, we studied the
kinetics of the essential coordinates. For both the Bl
domain of protein G and IF1 protein we used a large set of
very close configurations in the subspace defined by the
first 3 eigenvectors. These configurations were then used
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TABLE I. Cumulative Mean Square Inner Products Between the Ten Eigenvectors With Largest Eigenvalues
Extracted From Different Sets of Structures’

Eigenvector-

Mean cumulative square inner product

set NM_1 NM_close NM_far NM_all MD _firsthalf MD_secondhalf MD _all
NM_1 1.0 0.69 0.72* 0.73* 0.50 0.48 0.50
NM_close 1.0 0.79 0.94* 0.65 0.59 0.65
NM_far 1.0 0.93* 0.62 0.58 0.62
NM_all 1.0 0.66 0.61 0.66
MD_firsthalf 1.0 0.65 0.90*
MD_secondhalf 1.0 0.79*
MD_all 1.0

f(NM_1: Hessian of x-ray structure; NM_close: collection of the 10 Hessian calculations of closely related structures; NM_far: collection of
the 10 Hessian calculations of structures spread over configurational space; NM_all: collection of all 20 Hessian calculations; MD_firsthalf:
eigenvectors extracted from the first half of the MD simulation of 1.2 ns; MD_secondhalf: eigenvectors extracted from the second half of the
MD simulation of 1.2 ns. MD_all: eigenvectors extracted from the complete MD simulation of 1.2 ns.)

*These values are overestimated because the structures over which the pairs of eigenvectors were calculated partially overlap.

to start new short MD simulations from which we calcu-
lated the average square displacement from the initial
point as a function of time for the first three essential
coordinates. We were interested in characterizing the
kinetic behavior of the system after the first fast relaxation
when it really enters into the “diffusion regime.” For these
coordinates, this fast relaxation should be completed within
30-40 fs, as evaluated from the first fast decay of the
velocity autocorrelation function to nearly zero (data not
shown). The average square displacement was calculated
using configurations sampled every 100 fs as shown in
Figure 2a and 2b. Such a sampling frequency guarantees
that in our analysis we skip completely any kinetic effect
due to the initial shape and fast relaxation of the velocity
autocorrelation function (e.g. the free flight effect). Hence
we focused only on the kinetics behavior due to the tail of
the velocity autocorrelation function. In order to increase
the statistical sample we averaged the mean square
displacements along the first three eigenvectors, assuming
a similar diffusional behavior for these essential coordi-
nates. The curves were fitted by a non-linear least-squares
fitting procedure to the following functional form (see
Appendix B):

(A%(D) — (AX(te)) = 2D.(t — to) + Agre(1 — e~ 0). (1)

Here t, is the time at which the first displacement was
calculated (100 fs), D.. is the long-time diffusion constant,
7. the “relaxation time” and A, the amplitude of the short-time
behavior. For a derivation of this formula see Appendix B.

As is clear from the figures, the theoretical model
function reproduces the data obtained by the simulations
in the time range investigated. For both proteins, the
distribution of residuals was completely compatible with a
Gaussian distribution centered on zero. For IF1 protein,
the long-time diffusion coefficient for the first three princi-
pal eigenvectors was D.. = 3.7 X 1074 nm? ps~! and the
relaxation time 7, = 2.2 ps. In the case of the B1 domain of
protein G we found a long time diffusion coefficient D., =
1.9 X 10~* nm? ps~! and a relaxation time 7, = 2.8 ps for
the first three eigenvectors. The short time diffusion
coefficient (D.. + ¥ Ap), given by the slope at short time
(t < 1) was comparable for both proteins.

This double diffusion behavior with the long-time diffu-
sion constant smaller than the short-time diffusion con-
stant, is due to the slow decay (convergence to zero) of a
negative tail in the velocity autocorrelation function (see
Appendix B). Interestingly, a slowly decaying negative tail
of the velocity autocorrelation function can also be ob-
served for diffusion in dense liquids (viscoelastic effect),
where in general such a fact is given by a slow structural
rearranging of the liquid near the moving particle.30-32 A
similar basic physical process can be hypothesized for the
essential coordinates diffusion in the medium of the other
coordinates although in the dense liquid diffusion the tail
decay of the velocity autocorrelation function is usually
modeled with a power law which in general does not
provide a double mode diffusion.3%-32 A possible simple
physical model for the diffusion behavior of the essential
coordinates can be the following: the double diffusion
corresponds to a short-time diffusion within a configurational
region that can be approximated by a single harmonic well,
followed by diffusion between such regions, with a long-
time diffusion constant D.. Transitions between local
potential energy minima can be expected to dominate the
large-scale dynamics of proteins, as previously observed
for simple Lennard-Jones fluids.’®> Hence the negative tail
in the velocity autocorrelation function may be interpreted
as an increase, with respect to the single harmonic well, of
the friction experienced by the essential coordinates in the
“bath” of all the other coordinates, resulting in a time
decay of the diffusion integral. Although the system is
energetically excited and hence able to move between
different harmonic well regions without really feeling free
energy barriers, the motion from one minimum region to
the other requires a longer relaxation time due to the
equilibration of other degrees of freedom not contained in
the subspace defined by the three essential eigenvectors.

Figure 2a also shows the average square displacement of
eigenvectors triplets 9-11, 19-21, 49-51 and 99-101 for
the B1 domain of protein G. In this case the initial
positions were chosen in the vicinity of each eigenvector’s
average position, as for these “near-constraints” the free
energy is roughly a quadratic function of the displacement,
and hence the diffusion behavior is observed only close to
the average position. The model curve (Eq. 1) was also
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the data (dashed lines). The eigenvalues of the corresponding eigenvec-



KINETIC MODEL OF PROTEIN MOTION

fitted to the mean square displacement for eigenvectors
9-11, where we found a long-time diffusion constant D.. =
1.9 X 1075 nm?2 ps~! and 1. = 0.9 ps. After 25 ps these
coordinates already approach their equilibrium value indi-
cating that from this time on the eigenvector coordinates
start to feel a relevant free energy gradient. The figures
also show the average eigenvalues of each triplet which
define the limit to which the average square displacement
will converge. The time required for each triplet to reach
the corresponding average eigenvalue, a rough measure of
the equilibration time, was estimated, obtaining for the
9-11 eigenvectors At = 50 ps and for 19-21 At = 15 ps.
From the 50% eigenvector on, the full convergence to the
eigenvalue (full equilibration) was reached within 1 ps.
From these data it is evident that only the first 20
eigenvectors are responsible for the structural fluctuations
which involve a time scale larger than 20 ps, and the
kinetics of these coordinates can be largely described by
the presented double diffusion model.

CONCLUSION

In the first part of this paper we compared the structural
fluctuations of the C-alpha coordinates of single harmonic
wells, for a protein surrounded by a water layer, with the
ones obtained by MD of the same protein solvated in a box
of water. The dynamical behavior of the protein, obtained
by MD, cannot be described properly by a local harmonic
approximation, although each local harmonic essential
subspace has a certain degree of similarity with that
derived from MD. On the contrary, we have found that the
internal dynamics of a protein can be well approximated
by a combination of the local dynamics of a limited set of
harmonic wells. From the results in the second part (Fig.
2), it seems that it is possible to accurately describe the
kinetics in the essential subspace using a double diffusion
model, with a characteristic relaxation time 7. of the faster
component of about 1-3 ps. This fact, taken together with
the conclusions drawn from the comparison of the struc-
tural fluctuations during MD and within local harmonic
wells, suggests the following possible physical model: the
first diffusion regime, up to a few picoseconds, probably
corresponds to the diffusion of the essential coordinates in
a single harmonic well, and is characterized by a higher
diffusion constant due to the fact that the “bath” degrees of
freedom do not have to equilibrate into a new local
condition. The second diffusion mode is probably connected
with the motions from one well to the other, with then a
lower diffusion constant, caused by an increase in friction,
resulting from the equilibration of the system when the
essential coordinates move beyond the initial well. Finally
from the study of the near-constraints kinetics it was
found that only the first 20 eigenvector coordinates, respon-
sible for the largest structural fluctuations, are associated
with slow structural transitions, with a Kinetics which can
be largely described by the presented diffusion model.
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APPENDIX A

In this appendix we show how it is possible to obtain the
Ca fluctuations for one harmonic well, and hence to derive
the eigenvectors and eigenvalues of the Ca covariance
matrix, in such a way that these can be directly compared
with the fluctuations obtained by MD. For this purpose we
show that the probability density of the internal Ca
fluctuations is a multivariate Gaussian distribution, and
derive the eigenvectors and eigenvalues of that distribu-
tion.

The potential energy for a single harmonic well is given
by a quadratic function of the coordinates with respect to
the local potential minimum:

1
V(AX) = V, + 3 AXTHAX )

with

AX = X = Xppin- 3)

Here x is the full Cartesian coordinates column vector
and H the Hessian matrix. Since the Hessian is by
definition a symmetric matrix, its eigenvectors can always
be chosen as an orthonormal set. Six eigenvalues are zero,
corresponding to overall translation and rotation. Hence
we can define (for an unconstrained molecular cluster)
3N — 6 orthonormal coordinates &; such that

1
V() = Vo + 3 £'KE (4)
13N—6
= Vo + 5 > kg ®)
23
Here
K = BTHB (6)

is the diagonal eigenvalue matrix with diagonal elements
ki, with B the linear orthogonal transformation which
diagonalizes H, and & the coordinates defined by the
eigenvectors of H:

Ax = BE. (7)

Since the Jacobian of an orthogonal transformation is
equal to 1, the canonical distribution function of &, i =
1,--+, 3N — 6, is given by the Boltzmann distribution

3N-6 Bk; 12 )
p(E) = H(g) o B, (®)

i=1

where B = 1/kgT. This means that the probability density
of the fluctuations along each nonzero eigenvalue eigenvec-
tor is an independent Gaussian distribution with variance
(&2) = 1/Bk; and (&) = 0 for i # j. The distribution function
of &, i = 3N — 5,.--, 3N, corresponding to the null
eigenvectors, is irrelevant, and these coordinates can be
arbitrarily set to zero.

We note that in the presence of n. internal constraints
Eq. 8 (but now for i =1, ..., 3N — 6 — n,) still gives the
correct probability density when the usual atomic coordi-
nates are replaced by generalized coordinates which are
defined by a local orthogonal set of axes on the constraint
surface. The computation of the Hessian in the presence of
constraints requires the calculation of the potential energy
second derivatives in the generalized coordinates defined
on the constraint surface. To avoid such complications we
have represented covalent bonds by harmonic terms rather
than by constraints.

The fluctuations of the x coordinates without any trans-
lation and rotation can be obtained from

X = Xpin + AX 9)

Ax = BE, (10)

where € now has the 6 translational/rotational &;, i = 3N —
5,..., 3N, exactly set to zero. The x covariance matrix for

the system with no translation and rotation is

C = (AXAXT)
K'-Yg 0
— TRT\ — T T — T
- B&g'BT = BEEBT=B BT @y
or, for any element,
3N-6
Cij = kBT ; krlB“B“. (12)

Here K’ is identical to the (3N — 6) X (3N — 6) sub-matrix
of K corresponding to the non zero-eigenvalues, C° is a
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6 X 6 null matrix and 0 is a (3N — 6) X 6 null matrix.
Equation 11 or 12 means that from the full-coordinate
Hessian H we can evaluate the covariance matrix for (any
subset of) the atomic coordinates due only to the internal
motions in the molecule.

Since, according to Eq. 10, each Ax; can be constructed as
linear combination of &'s which have independent Gauss-
ian distributions, the distribution of Ax; will be a convolu-
tion of Gaussians and hence will be Gaussian itself. Thus
the equilibrium distribution of any subset coordinate
vector AX must be a multivariate Gaussian, completely
determined by its covariance matrix C. This property
allows us to generate an equilibrium ensemble for the
subset from knowledge of its covariance matrix only. The
procedure is simple: first diagonalize the covariance ma-
trix:

Ax = Tq (13)

C=TATT, A=\, (14)
then sample each q; from a normal distribution with
variance \;, and finally construct Ax from Eq. 13. The
structures thus generated for the C, subset were fitted
onto a common reference structure also used for the
configurations obtained by MD. In this way we could
directly compare local harmonic C, fluctuations in differ-
ent minima to each other and to the fluctuations observed
in MD.

We note that the covariance matrix also determines the
free energy Hessian H’' in the subset of coordinates,
normally obtained by integration over the equilibrium
distribution of all other coordinates. If overall translation
and rotation have been removed from the coordinate set,

H' =kgTCL

APPENDIX B

In this section we describe the theory used in this paper
to model the kinetics in the essential subspace.

For a coordinate g we can express the average square
displacement from an initial point, as a function of time,
as:

t t ~ AY: 2 "

(Aq2(t) = < [ at [T awya de >

t t ~ "\ A~ 1" 2
= [ ar [Cawawy) dt (15)
where q is the time derivative of g, Aq(t) = q(t) — q(0) and
the angle brackets represent the ensemble average. Using

standard derivations we can rewrite the previous equation
as:

(Ae(t) = 2 [ 1) d, (16)

where

1) = [ v o (17)
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Fig. A1. Time behavior of diffusional functions. The details of the

functions below the (short) time 7, are irrelevant and indicated by a
dashed line. 1A: Velocity autocorrelation function, with long negative tail.
1B: The function /(t) (see text). 1C: The mean square displacement.

and (1) = (q(0)g(t")) is the velocity autocorrelation func-
tion of g. In a typical simple diffusion model the function
I1(7) is a rapidly increasing function converging to a posi-
tive final value, reached approximately within a time
interval 7:

lim I(r) = D (18)

T—%

I)=D 1=r1, (29)
In this paper we use a more complex approach where we
still consider the function I(t) rapidly converging to a
positive value within 7, (corresponding to a fast first
relaxation), but we model the function I(t) differently for
T > T10. In fact, we consider that the system undergoes a
second, slower relaxation affecting I(7) via a simple first
order kinetics with time constant 7, leading to

I(t) = (Dy — D,)e"t—m + D, (20)

valid clearly only for T = 7. In Figure Al both the velocity
autocorrelation function y(7') and its integral 1(r) have
been sketched for this model. It is clear that for Dy > D..
the additional first order process corresponds to a slow
negative tail in the velocity correlation function.
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Inserting Eq. 20 into Eq. 16 we obtain

(Ag?(t) = 2 ( S dr+ [i6) dT) 1
= 2A + 2D, (t — 1) 22)
+ 27,(Dy — D.))[1 — e~ (t=m0)/x]
with

A= ["16) dn. 23)
(see Fig. 1a). The slope is given by

dAg*(t))
T =2D, + 2(D0 - D.) g (t-mo)me (24)
which corresponds to the usual Einstein-Smolukowsky
expression, when we distinguish two time regimes depend-
ing on the observation time in relation to 7.: t < 7: slope
2Dy, and t > 7. slope 2D...

If the displacement for a small time ty > 74 is subtracted
in Eq. 22, the following behavior is found:

(Ag(D) — (Ag?(ty)) = 2D.(t — to) + Agr(l — e 0/),  (25)
with
A, = 2(Dy,— D,,)e (=m0, (26)

Equation 25 was used to evaluate the time behavior of
(Ag2(t)) in the time range: 100 fs—25 ps, for the essential
coordinates and some of the first near constraints.

We note that the Kinetics of any internal coordinate,
including the essential ones, cannot be described by this
model to full equilibration, because in this time limit the
coordinates have sampled the whole available space and
reached the free energy barriers which define the corre-
sponding boundaries. This model, if appropriate, can be
used in a time range where the coordinates do not encoun-
ter a relevant free energy gradient. If free energy bound-
aries are met, the mean square displacement will gradu-
ally level off for longer times and reach the limit given by
the eigenvalue of the degree(s) of freedom concerned.
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