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Zusammenfassung

Diese Arbeit beschäftigt sich mit der Schätzung von Parametern und Zuständen in der Quan-
tentheorie. Die Theorie verallgemeinerter Quantenmessungen, vorgestellt in Kapitel 2, bildet
hierzu den begrifflichen Rahmen.

Der erste Teil der Arbeit, Kapitel 3 und 4 umfassend, untersucht die Balance zwischen der
durch Messung gewonnenen Information und der hierdurch am System verursachten Störung.
Für Einzelmessungen an einem einzigen System wird dieser qualitative Kompromiß quantita-
tiv in Form der Fidelities F und G untersucht, insbesondere für Qubits und Messung selbiger
vermittels der Klasse unscharfer Messungen. Sie bestehen aus kommutierenden Effekten und
können als ‘verschmierte’ Versionen gewöhnlicher hermitescher Observablen, wie z.B. Energie
oder Spin, interpretiert werden. Es wird gezeigt, daß die optimale Balance zwischen Infor-
mationsgewinn und Störung eine einfache Nebenbedingung an die Parameter liefert, die diese
unscharfen Qubit-Messungen charakterisieren.

Die FG-Ebene liefert eine anschauliche Darstellung der Fidelity-Balance. Für Qubits kann
sie ausgedrückt werden durch jene Parameter, die die unscharfe Qubit-Messung repräsentieren.
Diese Parametrisierung enthüllt eine einfache Struktur, die minimale von nicht-minimalen Mes-
sungen trennt (Kraus Operatoren nicht-minimaler Messungen enthalten einen nicht-trivialen
unitären Anteil in ihrer polaren Zerlegung). Es zeigt sich, daß nicht-minimale Messungen die
optimale Fidelity-Balance deutlich verschlechtern.

Ist vor einer Messung nichts über den zu schätzenden reinen Qubit-Zustand bekannt, kann
eine unitäre ‘back-action’, d.h. eine nicht-minimale Messung, die Fidelity F nicht erhöhen. Ex-
istiert nun aber Vorinformation über den Zustand, dann verbessert – wie in Kapitel 4 gezeigt wird
– diese Information zusammen mit einer passend gewählten ‘back-action’ die Fidelity, welche
für minimale Messungen mit Vorinformation berechnet wurde. Letztere kann ihrerseits größer
oder kleiner sein als die Fidelity, berechnet für den Fall daß keine Vorinformation über das
Qubit existiert; Information bedeutet nicht unbedingt eine höhere Fidelity. Interessanterweise
kann die Fidelity unter Einbeziehung von Vorinformation und diesen speziellen nicht-minimalen
Messungen höher ausfallen als die Fidelity ohne Vorinformation.

Im zweiten Teil der Arbeit, bestehend aus den Kapiteln 5 und 6, verschiebt sich der Schwer-
punkt auf die Schätzung von Parametern, die die Dynamik eines Qubits charakterisieren. Auf-
bauend auf füheren Arbeiten [Aud01, Aud02c] zur Echtzeit-Visualisierung von Rabi-Oszillationen
mittels Sequenzen unscharfer Messungen (N -Serien), werden verschiedene Schätzverfahren für
den Parameter |c1|2 entwickelt und verglichen. Die ursprünglich vorgeschlagene Schätzung
[Aud01] wurde im Hinblick auf Erwartungstreue konstruiert, ein Kriterium aus der klassis-
chen Schätztheorie. Ein zweites Verfahren wird mit Hilfe der ‘maximum likelihood’-Methode
abgeleitet. Diese Schätzung macht jedoch keinerlei Gebrauch von eventuell vorhandener Vorin-
formation über den Qubit-Zustand. Das dritte Schätzverfahren (‘Bayesian estimator’) bezieht
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solche Informationen über den Satz von Bayes mit ein. Um alle Schätzungen vergleichen zu
können, wird ein mittleres Fehlerquadrat konstruiert um ein Gütemaß zu erhalten. Mit Hilfe
dieses Maßes kann gezeigt werden, daß für eine N -Serie das Schätzverfahren von Bayes sowohl
dem ‘maximum likelihood’- als auch dem ursprünglichen Verfahren überlegen ist. Letzteres ist
seinerseits dem ‘maximum likelihood’-Verfahren unterlegen, d.h. die ursprüngliche Schätzung
hat ein größeres mittleres Fehlerquadrat.



Chapter 1

Introduction

Roughly 25 years ago, physicists began to realize that quantum mechanical systems could be
employed to accomplish information processing tasks beyond classical limitations. Since then,
quantum information theory became an ever growing field, boosted by theoretical breakthroughs
as well as the steadily increasing ability to control single quantum systems.

Two elementary processes are of great importance to quantum information and quantum
computation: state estimation and the characterization of the dynamics of a quantum system.
This thesis is dealing with both of these aspects, whose applications range from assessing the
performance of quantum gates or quantum communication channels, to the determination of
types and magnitudes of different noise processes in a system. In each case, information about
a quantum state is necessary, which means that measurements have to be made.

Projective measurements are often useless in this respect, especially when superpositions of
states occur. Hereby, generalized measurements provide a tool better suited. This concept of
measurement, originating in the late 1980s, became the new paradigm of quantum measurement
theory [Bus95, Bus91, Hol82, Kra83], superseding the old formulation of von Neumann which is
included in this approach.

The mathematical notion of observables as positive operator valued measures (POVMs) –
instead of hermitian operators with a projective valued measure (PVM) – had manifold moti-
vations, ranging from practical issues to foundational interests in quantum theory. Due to their
experimental realization as indirect projection measurements, the disturbing influence of gener-
alized measurements on a state can be chosen according to special requirements. This feature
predestines them for state estimation and monitoring of dynamics.

As aforementioned, both state estimation and the characterization of dynamics are discussed
in this work which consists of two parts: In the first part, the relation between information gain
and disturbance is discussed. Emphasis is put on qubits, the simplest non-trivial quantum sys-
tem, and the special class of unsharp measurements. The second part is concerned with the
characterization of dynamics. Rabi oscillations of a qubit provide an exactly solvable model
system for studying the real-time visualization of dynamics. Here, different methods for the
estimation of parameters characterizing this dynamical behavior can be tested.

This work is structured as follows: Chapter 2 introduces the language of generalized measure-
ments, the fundamental tool for investigations into quantum state estimation and parameter es-
timation theory. After a short motivation the mathematical theory of generalized measurements
in terms of positive operator valued measures is laid out as well as their experimental realization.

3



4 CHAPTER 1. INTRODUCTION

Chapters 3 and 4 are concerned with the influence unsharp measurements have on quantum
mechanical systems. In chapter 3 the trade-off between information gain and disturbance is
the main item of interest. A quantitative description of these qualitative terms is provided
by the well-known concept of fidelity. For one measurement on a single system the optimal
fidelity balance is investigated, especially for the class of minimal unsharp measurements of a
qubit. Non-minimal qubit measurements are subject of chapter 4. There, the question of a
partial reversal of non-unitary operations (i.e. measurements) by means of unitary back-action
is discussed.

Chapters 5 and 6 deal with parameter estimation and the visualization of dynamics, the
latter being subject of chapter 5. There, the real-time monitoring of a qubit’s Rabi oscillations
by means of a sequence of unsharp measurements motivates estimation of the parameter |c1|2.
In analogy to the fidelity, a quantitative measure defining the quality of a guess is developed.
Chapter 6 exclusively deals with guesses (estimators) for |c1|2 and their evaluation. In addition
to the originally proposed estimator of chapter 5, two new estimators are developed, followed
by a comparison of all estimators.

Chapter 7 summarizes all results and gives some ideas for further work.
Appendices A, B and C contain detailed calculations omitted in chapters 3 and 4, the Bloch

sphere representation of qubits and basic definitions of probability theory and classical estimation
theory, respectively.



Chapter 2

Generalized Measurements

State and parameter estimation in quantum mechanics are connected by the theory of gener-
alized measurements, laid out conceptually and mathematically in this chapter. Generalized
measurements as a necessary conceptual leap beyond the long accepted formulation of quan-
tum measurements given by von Neumann are motivated1 in section 2.1. Following up on this,
section 2.2 provides the mathematical implementation in terms of positive operator valued mea-
sures on Hilbert space. The physical realization of generalized measurements together with the
Stern-Gerlach experiment as a prime example is depicted in the concluding section 2.3.

2.1 Motivation

Since its emergence in the late 1920s, quantum theory on Hilbert space has been the basis of
fruitful and deep research into virtually all branches of physics. There seems to be no instance
of conflict between theoretical predictions and experimental results. In view of this success it
is remarkable that a few conceptual problems have resisted any attempted resolution even until
now. The most prominent of these is known as the ‘measurement problem’: It paraphrases the
fact that a superposition of quantum states

∑

i ci|i〉 reduces upon measurement instantaneously
with probability |ck|2 to the eigenstate |k〉 of the measured observable. This ‘collapse of the
wave function’ (or ‘reduction of the state vector’) badgered physicists since the work of John
von Neumann on mathematical foundations of quantum theory [vN32], where he introduced
quantum observables as self-adjoint operators in Hilbert space and the aforementioned projection
postulate to describe the reduced quantum states for discrete observables.

For over 40 years this paradigm stood at the heart of quantum measurement theory together
with other conceptual shortcomings (like, for example, the possibility of interpreting quantum
mechanics as a theory of individual systems with definite real properties, or certain limitations
on measurability discovered by Wigner. For details, see chapter one of [Bus95]). Some of these
became tractable in the 1980s once the probabilistic structure of quantum mechanics was appre-
ciated in its full generality. Besides Gleason’s theorem the introduction of observables as positive
operator valued measures (POVMs) were a crucial step in this development. Interestingly, the
latter discovery was made independently in a variety of rather disparate areas of physics, mo-
tivations ranging from foundational interests to fairly practical needs. This wide scope of the

1Here, as well as in subsections 2.2.1 and 2.3.2, we will closely follow [Bus95].

5



6 CHAPTER 2. GENERALIZED MEASUREMENTS

concept of POVMs demonstrates its status as an integral part of the basic structure of quantum
theory.

Now what are those motivations which led to the incorporation of generalized2 measure-
ments (represented by POVMs) into the quantum vocabulary? A quite thorough account on
these matters can be found in [Bus95]. Here, only one specific conceptual problem is sketched,
followed by a more in-depth analysis of the Stern-Gerlach experiment in subsection 2.3.2 once
the mathematical formalism is available.

Some puzzles in the foundations of quantum theory appeared in the form of a conflict be-
tween familiar classical physical ideas and some ‘strange’ implications of the quantum formalism.
In each case the resolution consisted of rephrasing a strict no-go verdict excluding certain sharp
(projective) measurements into a positive statement expressing the possibility of unsharp mea-
surements subject to some limitations.

One of these no-go verdicts is the non-commutativity of certain pairs of self-adjoint operators,
commonly interpreted as the root of the – classically unknown – incommensurability of the
corresponding observables. From the fundamental commutator relation

[Q,P ] = i~
�

(2.1)

it was argued that measurements of position and momentum are mutually exclusive and can-
not be performed together on single systems. Even worse, Heisenberg’s interpretation of the
uncertainty relation

∆Q · ∆P ≥ ~

2
, (2.2)

being a consequence of (2.1), limits the accuracy of position and momentum measurements
performed on ensembles of systems prepared in one and the same state; here, ∆Q and ∆P are
the standard deviations of Q and P in some state ρ.

Instead of accepting the mere incommensurability of position and momentum, the pioneers
of quantum theory considered various thought experiments (such as the gamma ray microscope)
to demonstrate that joint measurements of these complementary observables should be possible
in principle. The crucial idea hereby was that such measurements must not be too accurate, the
limits of precision given by (2.2). While the measurement indeterminacy interpretation of the
uncertainty relation is commonly accepted, its tenability was nevertheless long questioned due
to the lacking rigorous incorporation of the idea of inaccurate measurements into the quantum
formalism. Thus, a strict inclusion of unsharp measurements represented by positive operator
valued measures paved the way for a solution and deeper understanding of this and related
problems.

2.2 Mathematical Theory

Generalized measurements were motivated in the preceeding section among other things by
the fact that they arise naturally in the theoretical description of many experiments. Now
we are providing the main ideas behind POVMs in compact form in subsection 2.2.1 using an
experiment as our guide [Bus95]. Subsequently, the mathematical formulation in familiar terms
of operators in Hilbert space is given.

2Although generalized measurements are only introduced in the next section we use the term here to point
out the necessity for a theory of measurement going beyond von Neumann.



2.2. MATHEMATICAL THEORY 7

2.2.1 Statistical Analysis of an Experiment

In analyzing the general features of any physical experiment one is able to specify those math-
ematical structures that are relevant to the theoretical description of an experiment. Any type
of physical system is characterized by means of a collection of preparation procedures, the ap-
plication of which prepare the system in a state ρ. The set of states is not a simplex, thus
accounting for the fact that the same mixed state can be prepared by different mixtures of pure
states. Given a system prepared in a state ρ, a measurement can be applied, leading to the
registration of some outcome ωi. For illustrative purposes, we assume a finite3 set of pointer
readings Ω = {ω1, . . . , ωn}. The very existence of physical experience is due to the fact that one
is able to observe regularities in the event sequences occurring in nature. In particular, physical
experimentation as sketched above would lose its meaning, were there not a probabilistic con-
nection between the occurrence of a registration and the preceeding preparation. Hence, any
pair (ρ, ωi) of a state ρ and an outcome ωi should determine a conditional probability p(ωi

∣

∣ρ),

(ρ, ωi) 7→ p(ωi
∣

∣ρ) (2.3)

which in a long run of repeated experiments (N trials) is approximated by the relative frequency
N(ωi)/N of the occurrence of the outcome ωi. It should be noted that different preparation
procedures may be statistically equivalent in that they yield the same statistics for all possible
measurements. Therefore the states ρ correspond, strictly speaking, to equivalence classes of
preparation procedures. Similarly, different registration procedures may be statistically equiva-
lent in the sense of yielding the same probabilities in every state. This gives rise to the definition
of an observable as an equivalence class of measurements. In fact, the map (2.3) can be viewed
in two ways. First, any outcome ωi induces a state functional Ei,

Ei : ρ 7→ Ei(ρ) := p(ωi
∣

∣ρ) (2.4)

called an effect. Now the measured observable may be defined as the map assigning to each
outcome ωi its associated effect:

E : ωi 7→ Ei . (2.5)

According to the second reading of (2.3), any state ρ fixes a probability distribution

pρ : ωi 7→ pρ(ωi) := p(ωi
∣

∣ρ) .

In the simple case of a discrete experiment the properties of such a probability measure are
summarized in the positivity (pρ(ωi) ≥ 0) and normalization (

∑

i pρ(ωi) = 1) conditions. In
view of (2.4) the mapping ρ 7→ pρ is defined by the observable E. Since the properties of pρ are
naturally transferred to E, an observable will appropriately be called an effect valued measure.

It is natural to assume that any state functional Ei preserves the convex structure of the set
of states, that is, it associates with any mixture of states the corresponding convex combination
of probability. This is taken as a reflection of the statistical independence of a long run of
identical measurements performed on an ensemble of mutually independent systems. Effects are
thus represented as linear functionals on the space of states.

3This assumption is reasonable and will be used throughout the thesis. See also chapter 5.2 for a justification.
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2.2.2 Hilbert Space Formulation

The general statistical analysis sketched above gives a glimpse on the probabilistic structure
underlying generalized measurements. In the following we shall not be concerned4 with a rigorous
mathematical treatment of the introduced effect valued measures. Instead we consider how these
operationally defined objects enter quantum mechanics in terms of operators in Hilbert space.

One preliminary remark: Throughout this thesis we are solely dealing with closed5 quantum
systems of finite dimension and observables with discrete nondegenerate spectra. Hence, there is
no need to introduce the general operator-sum formalism whereby trace and non-trace preserving
quantum operations are represented. See, for example, chapter 8 of [Nie01].

Generalized Measurement Postulate

From what we have seen in subsection 2.2.1, we can phrase one aim of quantum measurement
theory: Given the initial state of a system, we want to be able to specify the probability of a
particular measurement result and the state of the system immediately after that measurement.
Therefore, we can formulate the postulate for generalized measurements:

Postulate 2.1 (measurement). Quantum measurements are described by a collection {Ms}
of measurement operators (often called Kraus operators), acting on the Hilbert space H of the
system being measured. The index s refers to the measurement outcomes that may occur6 in the
experiment. If the state of the system is |ψ〉 (respectively ρ for mixed states) immediately before
the measurement then the probability that result s occurs is given by

ps = 〈ψ|M †
sMs|ψ〉 resp. ps = tr[M †

sMsρ] ; (2.6)

after a measurement with result s, the system’s state is

|ψ′〉 =
Ms|ψ〉

√

〈ψ|M †
sMs|ψ〉

resp. ρ′ =
MsρM

†
s

tr[M †
sMsρ]

.

The measurement operators satisfy the completeness relation

∑

s

M †
sMs =

�
, (2.7)

expressing the fact that probabilities add up to one.

The novelty of this postulate (compared to the one of von Neumann) lies in the fact that
any set of operators {Ms} satisfying (2.7) can represent a measurement. In particular, the Ms

do not have to be projectors, MsMs 6= Ms, nor do they need to be hermitian, i.e. no reference
is necessarily made to any observable.

4The omitted theoretical parts are not significant for the understanding of this thesis, where only state changes
inflicted by unsharp measurements are important. Answering fundamental questions requires more detailed
mathematical background knowledge, an exhaustive account of which can be found e.g. in [Bus95] and [Bus91].

5closed, except for the duration of a measurement which we assume to be arbitrary short.
6In general, different Kraus operators Msi can be associated to one specific measurement outcome s, e.g.

ps =
P

i
〈ψ|M†

si
Msi|ψ〉 and |ψ′〉 =

P

i
Msi|ψ〉/ps. In this way noise processes are modeled which we neglect

downright.



2.2. MATHEMATICAL THEORY 9

This raises the question what kind of properties these measurements represent. Often, the
property a certain POVM7 represents can be determined by making reference to some known
sharp observable (i.e. a hermitian observable represented by a projection valued measure (PVM);
e.g. energy, spin, angular momentum, etc.). Indeed many POVMs derive from some PVM by a
coarse-graining procedure. For example, a POVM associated with the position variable Q arises
if one performs a convolution of the spectral measure with some confidence function [Bus95].
We shall refer to such an unsharp observable as a smeared (position) observable (it then becomes
possible to associate with a pair of incommensurable sharp observables a new pair of coexistent
unsharp observables which are smeared versions of the original ones. Whether two such unsharp
observables are coexistent or not depends on the degree of smearing involved. In the case of
position and momentum it is precisely the uncertainty relation (2.2) which serves to characterize
the amount of smearing required for their joint measurability).

Terminology

In order to avoid misunderstandings, let me define our terminology: generalized measurements
denote all possible POVMs. The term ‘observable’ stands synonymous for a generalized observ-
able, described by some arbitrary POVM. Unlike generalized, hermitian observables represented
by some spectral measure are called sharp or ordinary observables. Smeared (coarse-grained)
versions of sharp observables will be named unsharp. There, the spectral measure of the sharp
observable has been convoluted with some confidence function; thus, from a given measurement
result, no reliable conclusion regarding the initial state can be drawn. Unsharp measurements
are often called weak, referring to the influence such a measurement has on a state compared
to projective measurements. However, the unsharpness in question should in general not only
be taken as an imperfect perception (like a loose pointer of some measurement apparatus) of an
underlying more sharply determined property. On the contrary, this term is also intended to de-
scribe possible elements of reality whose preparation and determination are subject to inherent
limitations.

Speaking of sharp observables and spectral measures, we see that projective measurements
are a special case of the above postulate: by setting

Ms = Ps with PrPs = δrsPs ,

the hermitian observable M =
∑

s sPs is measured in accordance with von Neumann’s postulate.

POVM

The quantum measurement postulate involves two elements. First, it gives a rule describing the
measurement statistics, that is, the respective probabilities of the different possible measurement
outcomes. Second, it gives a rule describing the post-measurement state of the system. However,
for some applications the post-measurement state is of little interest (e.g. in an experiment where
the system is measured only once, upon conclusion of the experiment), with the main item of
interest being measurement statistics. If we define the operator

Es := M †
sMs , (2.8)

7we will define a POVM more closely in the next paragraph.
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the probability of measuring outcome s is (for a pure state) given from postulate 2.1 by ps =
〈ψ|Es|ψ〉, with |ψ〉 being the initial state before the measurement. Thus, the set of operators
Es is sufficient to determine the measurement statistics and we can restate (2.4) in terms of
operators:

Definition 2.1 (POVM). A set of operators {Es} is named a positive operator valued measure
(POVM) if and only if the following two conditions are met:

(i) each operator Es is positive ⇔ 〈ϕ|Es|ϕ〉 ≥ 0 ∀ϕ

(ii) the completeness relation
∑

sEs =
�

is obeyed.

The elements of {Es} are called effects or POVM elements. On its own, a given POVM {Es}
is enough to have complete knowledge of the probabilities of all possible outcomes; measurement
statistics is the only item of interest. If knowledge about the post-measurement state is favored,
we have to use definition (2.8) to connect POVM elements Es with measurement operators Ms.

Minimal and Non-Minimal Measurements

Interestingly, this interconnection of POVM elements and Kraus operators is not unequivocal.
In analogy to the decomposition of complex numbers z = |z|eiφ into modulus and phase, a
similar decomposition exists for linear operators on vector spaces (for a proof, see e.g. [Nie01]):

Proposition 2.1 (polar decomposition). Let A be a linear operator on a vector space V.
Then there exists unitary U and positive operators J and K such that

A = UJ = KU , (2.9)

where the unique positive operators J and K satisfying (2.9) are defined by J :=
√
A†A and

K :=
√
AA†. Moreover, if A is invertible then U is unique. The expression A = UJ is called

the left polar decomposition of A, and A = KU the right polar decomposition of A.

Hence, every Kraus operator on H can be written as Ms = Us|Ms|, with unitary Us and
positive operator |Ms|. Plugging this into (2.8) we get8

Es = M †
sMs (2.10)

= |Ms|U †
sUs|Ms| (2.11)

= |Ms|2

from what follows

|Ms| =
√

Es

Ms = Us
√

Es . (2.12)

From (2.10)-(2.12) we see that there is exactly one effect corresponding to each Kraus operator,
whereas the reverse is not true. To every POVM element Es corresponds an infinite number of
Kraus operators; different possible unitary parts, say Us and Ũs, are canceled in (2.11).

8Every positive operator is hermitian, i.e. |Ms|† = |Ms|.
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This has important consequences on the interpretation of the interplay between disturbance
caused by a measurement and information gained from it. Every effect Es just determines the
positive part of each Kraus operator,

√
Es = |Ms|. On the other hand we need nothing more than

the effects to determine all probabilities for every possible measurement result, see (2.6). Hence,
the unavoidable disturbance inherent to every measurement is completely given by the positive
part of each measurement operator. At the same time,

√
Es yields all information one can get

with this measurement. Any non-trivial unitary part Us 6=
�

in Ms does not contribute extra
information (In general, this unitary rotation of the measured state in H causes an unwanted
additional disturbance. But, as we will see in chapter 4, this unitary operation can lead as well
to an attenuation of disturbance caused by the positive part

√
Es). We therefore define:

Definition 2.2 (minimal, non-minimal). A measurement is called minimal if the respective
Kraus operators have a trivial unitary part, i.e. Us =

�
for all possible measurement outcomes s:

minimal measurement ⇔ Ms = |Ms| =
√

Es .

Consequently, non-minimal measurements have a non-trivial unitary part, Us 6=
�
:

non-minimal measurement ⇔ Ms = Us|Ms| = Us
√

Es .

For measurements on ensembles (i.e. N identically prepared copies of one state ρ – not
to be confused with the meaning ‘ensemble’ has in statistical mechanics, where it denotes an
infinite number of conceptual replicas of one system) this distinction is of no interest because
each ensemble member is measured only once so any additional state transformation has no
consequence on measurement statistics whatsoever. For successive measurements on a single
system, the above distinction becomes quite important. In this case, the same system is measured
(and thus disturbed) again and again. Thereby, unitary parts cause additional transformations
of the measured state. We will encounter this problem again in section 5.2.

2.3 Physical Realization

2.3.1 Neumark’s Theorem

Talking about generalized measurements is all very well, as long as there exists an operational
scheme by which an experimenter in some laboratory can realize such a measurement. The
existence of this scheme follows from a theorem due to Neumark, which not only ensures the
physical realizability of every possible POVM but at the same time provides the operational
rules necessary to carry out the measurement.

The theorem basically states that every POVM {Es} on a Hilbert space H can be extended
to a projection valued measure (PVM) {Ps} in a larger Hilbert space H̃ ⊃ H.

Thus, every generalized measurement on a system S can be realized by coupling it unitarily
to a second system A (ancilla), thereby entangling both. By means of a projection measurement
on the ancilla, the desired POVM on the system S is realized. The number of measurable pointer
readings s is given by the dimension of the ancilla A, which can, in principle, be arbitrary.

While it is true that any POVM can be formally reduced to a PVM acting on a larger Hilbert
space, this does not diminish the need for POVMs in the description of physical systems. If one
does not want to stick to an account of experiments solely in terms of pointer observables, thus
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dealing with phenomena on the level of measuring devices, one has got to perform the Neumark
projection: It is this step that enables one to speak of the object under investigation and its
measured observable.

2.3.2 Stern-Gerlach Experiment

Up to now the representation of quantum observables as positive operator valued measures has
been elucidated in theoretical respects. We shall now discuss a simplified9 version of the famous
Stern-Gerlach experiment showing that the quantity measured is, even under quite idealized
conditions, a smeared version of a sharp (i.e. projective) spin measurement.

furnace

screenmagnetic field

B0

z

z > 0

z < 0

Figure 2.1: Scheme of the Stern-Gerlach experiment. Small arrows along the path of the silver
atoms indicate their spin of 1

2
. Drawing taken from [Bus95].

A beam of neutral silver atoms, produced by a furnace, is directed through an inhomogeneous
magnetic field unitarily coupling spin degrees of freedom with spatial degrees of freedom. Due
to this coupling the atoms are deflected towards the upper (z > 0) and lower (z < 0) half of the
screen depending on their respective spin state (cf. figure 2.1).

Let B = (0, 0, B0 − bz) be the classical magnetic field produced by the Stern-Gerlach device
pointing along the z-direction. It acts on the atom via the interaction Hamiltonian (~ = 1 in
the following)

H = µ · B , µ = µ0σ , µ0 =
gse

2mc
correlating spin and space degrees of freedom (gs gyromagnetic ratio, e elementary charge, m
mass of a silver atom, c speed of light, σ = (σx, σy, σz) with σi Pauli matrices, µ magnetic

9The description given here actually renders the experiment inconsistent with Maxwell’s equations. However,
a realistic treatment (and one in accordance with electrodynamics) confirms the results stated here.
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moment). Assume that the field strength and gradient are so strong that changes due to the
‘free’ evolution H0 = p2/2m of the atom are negligible in comparison to the effect the interaction
has on the particle. Suppose further that the interaction region is confined to the location of
the magnetic field. The initial state of the atom entering the device is

|ψ0〉 = |φ(z)〉 ⊗ |ϕ〉 ,

with the spatial10 part |φ(z)〉 fairly well localized relative to the extension of the field region.
We take the spin state to be a superposition of σz eigenstates,

|ϕ〉 = c+|+〉 + c−|−〉 .

Upon passage the initial state is transformed according to

|ψτ 〉 = U(|φ(z)〉 ⊗ |ϕ〉)
= e−iτµ0(B0−bz)σz (|φ(z)〉 ⊗ |ϕ〉)
= c+|φ+(z)〉 ⊗ |+〉 + c−|φ−(z)〉 ⊗ |−〉

where |φ±(z)〉 = e∓iτµ0(B0−bz)|φ(z)〉 are the deflected wave functions. Writing these functions in
the momentum representation

φ̃±(p) = 〈pz|φ±(z)〉 = e∓iτµ0B0 φ̃(pz ∓ τµ0b)

shows that the inhomogeneous part of the magnetic field produces shifts of magnitudes ∓τµ0b
in the z-component of the center-of-mass momentum of the atom. Therefore it appears as if the
two components of the state separate in configuration space due to a constant force acting in
the z-direction.

Now a measurement has to be made, i.e. we have to describe the registration of spots on
the screen. The observable which corresponds to the measurement of the spots (called ‘screen
observable’) shall be modeled by means of projection operators P+ and P− corresponding to
the localization in the upper or lower half of the screen (cf. figure 2.1). The corresponding
probabilities can then be expressed with respect to the incoming spin state |ϕ〉 as

〈ψτ |P± ⊗ � |ψτ 〉 = |c+|2〈φ+|P±|φ+〉 + |c−|2〈φ−|P±|φ−〉
=: 〈ϕ|E±|ϕ〉

where the effects

E± = 〈φ+|P±|φ+〉|+〉〈+| + 〈φ−|P±|φ−〉|−〉〈−| (2.13)

constitute the unsharp spin observable actually measured in the experiment. One may immedi-
ately confirm that E+ + E− =

�
; however, the effects (2.13) are no projections, i.e. E2

± 6= E±,
unless their eigenvalues 〈φ+|P±|φ+〉 and 〈φ+|P±|φ+〉 are 0 or 1. If the center of mass wave pack-
ets |φ±〉 were well separated and localized in the appropriate half planes, i.e. if 〈φ±|P±|φ±〉 = 1
and thus 〈φ+|P∓|φ+〉 = 0, one would have recovered the familiar textbook description with E±
coinciding just with the projections |±〉〈±|. However due to the (unavoidable) spreading of wave
packets this could only be achieved approximately and for special initial states |φ〉.

10since there are no restrictions in the x- and y-directions the spatial part only depends on z.
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A final note on more realistic descriptions of the experiment: It can be shown [Bus95] that
any step towards a more realistic description of the experiment (such as realistic magnetic fields
and proper screen observables, taking into account detector or screen efficiencies as well as non-
instantaneous space localization measurements) will only increase the degree of unsharpness in
the measured spin quantity, meaning that the measured observable E± resembles less and less
the ideal projective case P±.



Chapter 3

State Estimation

The question of how well the pure quantum state |ψ〉 of a physical system can be estimated
is one of fundamental interest. It dates back to the early days of quantum mechanics and in
particular to a handbook article by Wolfgang Pauli [Pau33]. Since the state contains all informa-
tion available about a quantum system we can definitely calculate all probability distributions
starting from this state. Now, the inverse question can be asked: Is it possible to use a set of
probability distributions to reconstruct the quantum state in amplitude and phase?

It is possible if an infinite ensemble of identically prepared copies of a pure N -dimensional
state |ψ〉 =

∑

i ci|ui〉 =
∑

k dk|vk〉 is at our disposal. Then, the probabilities of all outcomes

|ci|2 = |〈ui|ψ〉|2 , |dk|2 = |〈vk|ψ〉|2 (3.1)

in two different bases {|ui〉}, {|vk〉} can be measured with arbitrary accuracy. Equations (3.1)
constitute a set of 2(N−1) independent (because of the two normalization constraints

∑

i |ci|2 =
∑

k |dk|2 = 1) experimental data needed to determine moduli and phases of ci = |ci|eiφi . The
N moduli |ci| are given by the first set of data in (3.1); the N − 1 relative phases (for example,
φ1 = 0) then follow from

|dk|2 =

∣

∣

∣

∣

∣

∑

i

〈vk|ui〉|ci|eiφi

∣

∣

∣

∣

∣

2

,

a set of N − 1 algebraic equations for the same number of unknowns (see also [Per93]).

In reality, however, only finite and usually small ensembles are available. This leads to the
problem of optimal state estimation with limited physical resources. During the last couple of
years, this problem attracted much interest in the context of quantum information processing,
quantum cryptography and quantum computation [Nie01].

Common to all approaches is that they use the so-called fidelity as a figure of merit. It
indicates how much on average the estimated state resembles the original (unknown) one. At the
same time, it can describe the knowledge acquired about |ψ〉 through measurement. Maximizing
the fidelity amounts to an optimization of the POVM used in the measurement scheme (how
this optimization looks like for the qubit case will be seen in section 3.4). Before discussing
fidelity in greater detail, we will first review some work that has been done in quantum state
estimation theory to give some idea of the subject.

15
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3.1 Schemes for Estimating a Pure Quantum State

Basically, two possible estimation schemes are conceivable: Either measurements on each ensem-
ble member are made or one single measurement on the whole ensemble is carried out. Let us
first discuss the latter possibility, which originated from a paper by Peres and Wootters [Per91].

There they asked the question: Is an ensemble of N identically prepared particles, viewed
as an entity, more than the sum of its components? That is, could we learn more about the
ensemble by performing a measurement on all constituent particles together than by performing
separate measurements on each particle? Massar and Popescu [Mas95] described such optimal
measurement procedures in the case of spin- 1

2 particles. They furthermore proved the conjecture
by Peres and Wootters and calculated the maximal fidelity (N + 1)/(N + 2) obtainable with
this procedure; as expected, the fidelity tends towards 1 (meaning the guess is exactly right) as
N tends to infinity. These optimal measurements (‘optimal’ in the sense of yielding the most
information about the state) are called ‘non-local’, referring to entangled systems exhibiting non-
local Einstein-Podolsky-Rosen correlations. The operators characterizing those measurements
do not factorize into components that act in the Hilbert spaces of individual particles only.

Following up on this, Derka et al. [Der98] presented a universal (i.e. always applicable, re-
gardless of the physical system under study) algorithm for optimal quantum state estimation
of an arbitrary finite dimensional pure system. In particular, they showed that finite1 POVMs
are sufficient for optimal state estimation. This result implied that an experimental realization
of such measurements is – in principle – possible. Subsequently, Latorre et al. [Lat98] derived
optimal POVMs to determine the pure state of a qubit with the minimal number of projectors
when up to N = 5 copies of the unknown state are available. Vidal et al. [Vid99] and Aćın et
al. [Aci00] generalized these optimal and minimal measurements to mixed states and systems of
arbitrary spin, respectively. However, the proposed strategies require the experimental imple-
mentation of rather intricate nonfactorizable operators for a simultaneous measurement on all
N ensemble members. Additionally, it could be difficult to have all N quantum systems avail-
able at the same time. In short, the experimental implementation of such measurements seems,
though feasible, quite involved. This suggests to consider ‘local’ measurements, i.e. separate
measurements on each member of the ensemble.

The most general individual measurement procedures come under the name of LOCC (local
operations and classical communication) schemes, as e.g. Bagan et al. [Bag02] pursue. In this
framework, one allows a wide class of local operations for which, depending on the outcome of
the local measurement performed on a copy, appropriate transformations can be applied on the
subsequent copies of the state before measuring again. Now, any local (i.e. unitary) operation
on an individual member of the ensemble may be viewed as a redefinition of the operator char-
acterizing the measurement performed on that copy. Hence, one can equivalently change the
measurement operators according to previous outcomes. Fischer et al. [Fis00] present such a
‘self-learning’ algorithm. There, a pure qubit state is estimated by a sequence of projective mea-
surements. The algorithm is used (1) to update (via Bayes’ theorem) the knowledge about the
true state and (2) to choose the best projector for the next measurement. Numerical simulations
show that one gets very close to the optimal upper limit (set by collective measurements) with
small ensemble sizes N ≈ 40. Hannemann et al. [Han02] gave an experimental realization of
this algorithm using two hyperfine states of a single trapped 171Yb+ ion as a qubit.

1Until then, the only solution to the problem of the best possible estimate of a state ρ, given by Holevo [Hol82],
consisted of an infinite continuous set of operators.
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3.2 Fidelity as Distance Measure for States

To estimate an unknown quantum state ρ, two things have to be done: (1) find an estimate ρs
based on information gained about ρ through measurement (summarized in the index s) and
(2) judge the quality of the given estimate by some measure of ‘goodness’. In this section we
will be concerned with this measure.

A variety of distance measures has been developed for quantum information theory (see, for
example, [Fuc95] and [Nie01]), often in analogy to measures known from the classical theory.
This analogy proved itself fruitful because quantum as well as classical information deal with
probability distributions. A classical information source is modeled as a random variable, that is,
as a probability distribution over some source alphabet (e.g. each character from an English text
is seen as a random variable with its source alphabet being the Latin one). This characterization
of information sources as probability distributions compelled the use of classical information-
theoretic measures of distinguishability for probability distributions as the starting point for
quantifying the same for quantum states.

Among those measures is the widely used Uhlmann fidelity, describing the resemblance be-
tween two mixed quantum states ρ and ρs:

fs :=

(

tr[

√

ρ1/2ρsρ1/2]

)2

. (3.2)

fs is not a metric (ρ = ρs ⇔ fs = 1), but there exist measures derived from the fidelity being
metrics. We shall not be concerned too much with the properties of fs or the pros and cons
to decide on one or the other distance measure (see again [Fuc95] and [Nie01] for exhaustive
accounts). The reasons to choose fidelity in this work are twofold: first, it is a mathematically
simple measure often used in the literature; second, it is a quite intuitive concept. To see
this, we rewrite (3.2) for pure states ρ = |ψ〉〈ψ| and ρs = |ψs〉〈ψs|: since ρ1/2 =

√

|ψ〉〈ψ| =
√

|ψ〉〈ψ|ψ〉〈ψ| =
√

ρ2 = ρ,

fs =

(

tr[

√

ρ1/2ρsρ1/2]

)2

=
(

tr[
√

|ψ〉〈ψ|ρs|ψ〉〈ψ|]
)2

=
(

tr[
√

|〈ψ|ψs〉|2|ψ〉〈ψ|]
)2

= (tr[|〈ψ|ψs〉|])2

= |〈ψ|ψs〉|2 , (3.3)

which is the well known overlap between two different pure states. Relation (3.3) shows, that
among being symmetric in its arguments, fs is confined to the unit interval [0, 1] with fs = 1
being the perfect guess (|ψs〉 = |ψ〉) and fs = 0 corresponding to |ψs〉⊥|ψ〉.

The fidelity defined so far depends on the outcomes of measurements and on the pre-
measurement state |ψ〉. It is therefore advantageous to consider the mean operation fidelity,
gained by averaging over all possible outcomes s of the measurement, performed on every pos-
sible pre-measurement state (ps = 〈ψ|Es|ψ〉 with the corresponding POVM {Es}):

F =

∫

dψ p(ψ)
∑

s

psfs . (3.4)
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Here, dψ is a measure on the space of pure states which is invariant under unitary transformations
(see appendices of [Ban00] and [Sch94]) and the probability density p(ψ) reflects the a priori
knowledge about the pre-measurement state. The normalization of the integration measure
is such that

∫

dψp(ψ) = 1. The term ‘operation’ in ‘mean operation fidelity’ refers to the
measurement applied to the pure state |ψ〉 one wishes to estimate.

3.3 Disturbance vs. Information Gain in Quantum Operations

With the fidelity (3.4) at hand to judge the quality of an estimate for some unknown quantum
state, we can answer the first part of our estimation problem: How to find an estimate if certain
information about the state is available?

Usually the best possible estimate is desirable, which is tantamount to maximize the fi-
delity. Naturally, the more information one has the better the estimate will be. But: Every
measurement is linked to an unavoidable disturbance, altering the initial state depending on
the measurement’s strength (“the more you get the more you wreck”). This gets important as
soon as the measured (and estimated) state is needed in a subsequent task (e.g. in a quantum
network), at best undisturbed. Now, the trade-off between information gain and disturbance is
no longer negligible, especially if only one copy of the system is available (if there is an ensemble
of identical copies to begin with, one copy can remain undisturbed and the trade-off becomes
obsolete insofar as the untouched qubit is concerned).

Banaszek considered this quantum mechanical trade-off between information gain and state
disturbance and provided an analytical description in terms of mean fidelities. His results shall
be reviewed in this section, since they mark the starting point for my own line of investigation.
In particular, some analytical techniques used in the derivation of the trade-off are important
for my work. Therefore they shall be discussed in greater detail.

3.3.1 Fidelity Balance in Quantum Operations

In [Ban01a] the following problem is considered: Suppose we are given a single d-level particle in
a completely unknown pure state |ψ〉. We want to make a guess about the quantum state of this
particle, but at the same time we would like to alter the state as little as possible. Two fidelities
can be associated with this procedure. The first one, denoted by F , describes how much the
state after the operation resembles the original one. It is the mean operation fidelity introduced
in the preceeding section. The second fidelity, denoted by G, characterizes the average quality
of our guess. As pictured above, it is natural to expect a trade-off between these two quantities:
The more information is extracted from the system, i.e. the larger G, the less the final state
should resemble the initial one, hence the smaller F should be. What is the actual quantitative
bound between F and G?

Two extreme cases are well known: If nothing is done to the particle we have F = 1, but then
our guess about the state of the particle has to be random, which yields G = 1/d. On the other
hand, the optimal estimation strategy for a single copy ([Bru99], [Aci00]) yields G = 2/(d + 1),
but then the particle after the operation cannot provide any more information on the initial
state; thus also F = 2/(d + 1). What does the constraint in between look like? Let us first
derive F and G before going on to the actual trade-off.
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Defining F and G

The most general strategy that can be applied to the particle has the form of a POVM {Es}
with Kraus operators Ms, where s = 1, . . . , N labels all possible outcomes. Remember that N
can (due to Neumarks theorem, cf. subsection 2.2.2) be arbitrary, that is N can be larger than
d. The classical information gained from this measurement is given by the index s, which is
subsequently used to estimate the initial state of the particle. Having obtained the outcome s
with probability 〈ψ|M †

sMs|ψ〉, the pre-measurement state is transformed into

|ψ〉 → Ms|ψ〉
√

〈ψ|M †
sMs|ψ〉

.

We shall measure the resemblance of the transformed state to the original one using the mean
operation fidelity (3.4), that is, the squared modulus of the scalar product, averaged over all
possible realizations of the experiment:

F =

∫

dψ

N
∑

s=1

|〈ψ|Ms|ψ〉|2 . (3.5)

Here, the uniform2 probability distribution p(ψ) has been absorbed into the canonical measure
dψ over the space of pure states.

Given the outcome s of the operation, we can make a guess |ψs〉 what the original state was.
The quality of this guess, assuming that the initial state was |ψ〉, can – in analogy to F – be
quantified with the help of the overlap |〈ψs|ψ〉|2. The mean estimation fidelity G is thus given

by averaging this expression over all outcomes s with the probability distribution 〈ψ|M †
sMs|ψ〉,

and by integrating over states |ψ〉:

G =

∫

dψ
N
∑

s=1

〈ψ|M †
sMs|ψ〉|〈ψs|ψ〉|2 .

After evaluation of the integrals over |ψ〉 (see [Ban01a], [Ban00] and [Sch94] for details) we get

F =
1

d(d+ 1)

(

d+

N
∑

s=1

|tr[Ms]|2
)

(3.6)

G =
1

d(d+ 1)

(

d+

N
∑

s=1

〈ψs|M †
sMs|ψs〉

)

. (3.7)

Let me briefly direct attention to equation (3.7): This expression directly provides a recipe
for optimal assignment of guesses |ψs〉 to outcomes of the operation: each of the components

〈ψs|M †
sMs|ψs〉 in the sum over s is maximized if |ψs〉 is the eigenvector of M †

sMs corresponding
to its maximum eigenvalue. This maximum-likelihood estimate for states, given a sample of size
one (i.e. the measurement outcome s), will become important later on in section 6.2.

2Since nothing is a priori known about |ψ〉 it is reasonable to assume equipartition.
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Minimal Measurements Optimize Trade-Off

Now, in order to relate the fidelities F and G to each other, it is helpful to consider the singular-
value decomposition [Nie01] of the Kraus operators Ms,

Ms = VsDsWs ,

where Vs and Ws are unitary, and Ds is a semipositive definite diagonal matrix,

Ds =
d−1
∑

i=0

λsi |i〉〈i| ,

with the diagonal elements put in a decreasing order: λs0 ≥ · · · ≥ λsd−1 ≥ 0. We will first show
that only the diagonal matrices Ds, i.e. the minimal measurement part of the corresponding
Kraus operator Ms, are relevant to the trade-off (the following derivation is also valid if the
polar decomposition for Ms us used, see below). Indeed, the modulus of the trace of the matrix
Ms appearing in (3.6) is bounded by

|tr[Ms]| =

∣

∣

∣

∣

∣

d−1
∑

i=0

〈i|WsVsDs|i〉
∣

∣

∣

∣

∣

≤ λsi

d−1
∑

i=0

|〈i|WsVs|i〉| ≤
d−1
∑

i=0

λsi , (3.8)

and moreover any quantum operation can easily be modified in such a way that the equality
sign is reached. What needs to be done is to follow the operation Ms with an extra unitary
transformation W †

sV
†
s depending on the outcome s. This corresponds to the modification of the

Kraus operator according to Ms →W †
sV

†
sMs, which makes each element of the operation a posi-

tive operator, i.e. a minimal measurement (W †
s V

†
sMs = W †

sDsWs is a similarity transformation
of Ds, preserving its positivity).

To clarify this point, let me rewrite the argument taking now the polar decomposition as
– equivalent – basis for discussion. Accordingly, Ms can be written as Ms = Us|Ms|. To
compensate for the unitary part of Ms, known in the literature under the name of (unitary)
back-action (see, for example [Wis95]), one only has to change the Hamiltonian evolution of the

measured system with the unitary operation U−1
s = U †

s , depending on the obtained measurement
readout s. This feedback procedure avoids any additional disturbance of the state caused by
the back-action term Us. The change in Hamiltonian evolution can equally be accomplished by
modifying the Kraus operators:

Ms = Us|Ms| →M ′
s = U †

sMs = |Ms| .

Completing the Trade-Off

Let us complete the derivation of the trade-off between F and G. As we are interested – given
a fixed value of G – in the maximum value of F , we can assume with no loss of generality that

F =
1

d(d+ 1)
(d+ f)

G =
1

d(d+ 1)
(d+ g) ,
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where f and g are given by (cf. (3.6), (3.7) and (3.8))

f =

N
∑

s=1

(

d−1
∑

i=0

λsi

)2

, g =

N
∑

s=1

(λs0)
2 .

Note that f and g do not contain any unitary part, that is, we are exclusively dealing with
minimal measurements. To relate f and g to each other, it is convenient to introduce vector
notation which facilitates the use of vector inequalities (see Appendix A.1).

We define d real vectors vi = (λ1
i , . . . , λ

N
i ), where the index i runs from 0 to d − 1. With

this f and g can be rewritten:

f =

N
∑

s=1

(

d−1
∑

i=0

λsi

)2

=

d−1
∑

i,j=0

N
∑

s=1

λsiλ
s
j =

d−1
∑

i,j=0

vi · vj (3.9)

g =

N
∑

s=1

(λs0)
2 = |v0|2 . (3.10)

The trace of the completeness condition
∑

sEs =
�

written in vector notation reads

tr[
N
∑

s=1

M †
sMs] =

d−1
∑

i=0

N
∑

s=1

(λsi )
2 =

d−1
∑

i=0

|vi|2 = d . (3.11)

Let us now suppose that the vector v0 is fixed. The mean estimation fidelity is then given by
G = (d+ |v0|2)/[d(d+1)]. What is the maximum operation fidelity F that can be achieved with
this constraint? The answer to this question is provided by applying the Schwarz inequality to
(3.9):

f ≤
d−1
∑

i,j=0

|vi| · |vj | =

(

d−1
∑

i=0

|vi|
)2

=

(

√
g +

d−1
∑

i=1

|vi|
)2

. (3.12)

In the last step we excluded from the sum over i the norm of the vector |v0| which is fixed and
equal to

√
g, cf. (3.10). The sum of the remaining vectors can be estimated using the inequality

between the arithmetic and quadratic means,

1

d− 1

d−1
∑

i=1

|vi| ≤

√

√

√

√

1

d− 1

d−1
∑

i=1

|vi|2 =

√

d− g

d− 1
, (3.13)

where we have evaluated the sum over i using (3.11). Inserting this bound into (3.12) we finally
obtain the inequality

f ≤
[√

g +
√

(d− 1)(d − g)
]2
, (3.14)

which expressed in terms of F and G takes the form

√

F − 1

d+ 1
≤
√

G− 1

d+ 1
+

√

(d− 1)

(

2

d+ 1
−G

)

. (3.15)
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Example of an Optimal POVM

From the estimate (3.8) of the trace of Ms we saw that only minimal POVMs have a chance to
optimize the trade-off between F and G. To be optimal, they have to make (3.14) an equality.
One can therefore concentrate on either the semipositive matrices Ds or the minimal positive
part |Ms| and derive relations for the eigenvectors λsi of the POVM. A more elegant way is to
formulate the necessary and sufficient conditions leading to optimality in the vector notation.

A note on the ambiguous meaning of ‘optimal’: From now on we call measurements ‘optimal’
if they saturate the trade-off (3.14). There will be no confusion with the meaning ‘optimal
measurement’ has in section 3.1 (where it denotes non-local measurements on ensembles) since
we will restrict ourselves to single quantum systems or local measurements on ensembles.

The Schwarz inequality (3.12) becomes an equality if all the vectors v0, . . . ,vd−1 are collinear.
Furthermore, the equality sign in eq. (3.13) holds if and only if |v0| = · · · = |vd−1|. We can
therefore choose v0 = (λ1

0, . . . , λ
N
0 ) ∈ � N with λs0 ≥ 0 (to ensure positivity of {Es}), while

v1 = v2 = · · · = vd−1 = (λ1
1, . . . , λ

N
1 ) .

Given v0‖v1 implies v1 = av0 (a > 0) or λs1 = aλs0. From the trace of the completeness relation
(3.11) and using g of eq. (3.10), we get:

d =
d−1
∑

i=0

|vi|2 = |v0|2 + (d− 1)|v1|2

= g
[

1 + (d− 1)a2
]

and hence

λs1 =
1√
g

√

d− g

d− 1
λs0 .

With this proportionality3 at hand, we make the ansatz (|Ms| ≡Ms)

Ms = λs0|s− 1〉〈s− 1| + λs1(
� − |s− 1〉〈s− 1|) (3.16)

where {|s − 1〉} denotes any orthonormal basis. Now s = 1, . . . , d, that is, the number of
measurement outcomes equals the dimensionality of the system. Choosing λs0 =

√

g/d, we
arrive at the exemplary POVM given by Banaszek:

Ms =

√

g

d
|s− 1〉〈s− 1| +

√

d− g

d(d− 1)
(

� − |s− 1〉〈s− 1|) . (3.17)

The ansatz (3.16) restricts the class of POVMs to one with commuting effects. Konrad
([Kon03], p. 48) showed that POVMs with commuting effects correspond to weak measurements
of sharp (hermitian) observables. It could not be shown in this thesis whether only POVMs
describing smeared hermitian observables saturate the fidelity trade-off (3.14). It seems however,
that the one-to-one correspondence4 between the number of measurement outcomes N and
dimensionality d of the system, characteristic for projective measurements, plays a role for
optimal generalized measurements. Setting g = d we recover a PVM with projectors |s−1〉〈s−1|,
s = 1, . . . , d.

3Although g =
P

s
(λs

0)
2 depends on all λs

0, it has a fixed value as soon as we choose a certain v0.
4N > d and N < d stand for redundancy and loss of information, respectively. If N < d, information about

several system states is conveyed with one outcome. If N > d, several outcomes contain (approximately) the same
information.



3.3. DISTURBANCE VS. INFORMATION GAIN IN QUANTUM OPERATIONS 23

Visualization in the FG-Plane

Before we see how optimal measurements for qubits look like, I want to visualize their position in
the FG-plane. A simple transformation of eq. (3.15) shows that the region allowed by quantum
mechanics for the fidelities F and G is bound by the fragment of an ellipse given by the equation

(F − F0)
2 + d2(G−G0)

2 + 2(d− 2)(F − F0)(G−G0) =
d− 1

(d+ 1)2
(3.18)

with F0 = (d + 2)/(2d + 2) and G0 = 3/(2d + 2). Figure 3.1 shows the region of all possible

2/(d+ 1)

1

1/d
2/(d+ 1)

G

F

Figure 3.1: Rescaled bound for the operation fidelity F versus the estimation fidelity G, plotted
for d = 2.

values of F and G for qubits, bound from above by (3.18). Each point corresponds to a certain
POVM, with minimal Kraus operators lying on the boundary and non-minimal (that is, Kraus
operators with non-trivial unitary part) POVM elements below that boundary. In particular,
we can identify the two extreme cases mentioned at the beginning of our derivation. If nothing
is done to the particle we are in the upper left corner, since F = 1 and G = 1/d. Projective
measurements are located in the lower right corner: They disturb the particle’s state maximally,
F = 2/(d + 1), but at the same time the maximal amount of information is gained, hence
G = 2/(d + 1).

3.3.2 Summary

To summarize the long account of [Ban01a]: We explicitly showed the derivation given by
Banaszek of an analytical bound for the fidelities describing the quality of estimating the pure
state of a single copy of a d-level particle, and the degree the unknown initial state is altered
during this operation. No restrictions are imposed a priori on the used POVM. After averaging
over all unknown states (with equal weights) it turns out that only minimal measurements have
a chance to saturate the upper bound. This upper bound is subsequently obtained by applying
certain inequalities to the terms whereby mean operation fidelity F and mean estimation fidelity
G differ. Optimal POVMs saturating this upper bound seem to describe unsharp measurements
of sharp observables.
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Remarks

Banaszek et al. [Ban01b] generalized the fidelity trade-off (3.15) to the case of finite ensembles.
With the increasing size of such an ensemble, one can extract more and more precise information
about the prepared state. In the FG-plane, the optimal trade-off curve then stretches towards
the upper right corner, with the limit G = 1 and F = 1 being reached as the ensemble size N
goes to infinity (see figure 1 in [Ban01b]).

In relation (3.15) the pre-measurement state was the subject of inference. Equally, one can
ask about the post-measurement state and give an estimate for it [Aud02a]. One finds that
the mean estimation fidelity Gpost for the post-measurement state is proportional to the mean
operation fidelity G for the pre-measurement state:

G =
1

d+ 1
(1 +Gpost) ,

and thus (3.15) can be transcribed into a constraint between F and Gpost. Furthermore, the
best guesses for the pre- and post-measurement state are closely related to each other. If |χspre〉
and |χspost〉 are the best pre- and post-measurement guesses given the outcome s, it turns out
that

Us|χspre〉 = |χspost〉 .

In other words, the best guess for the post-measurement state is just the best guess for the pre-
measurement state transported with the unitary part of the respective Kraus operator. Hence,
for all minimal measurements the best estimates for the pre- and post-measurement state always
agree if the ingoing state |ψ〉 is completely unknown. See [Aud02a] for details.

3.4 Optimizing Qubit Measurements

We now apply the trade-off (3.14) to a specific class of POVMs. The motivation to consider
these measurements came from the desire to optimize the real-time visualization of a qubit’s Rabi
oscillations ([Aud01] and [Aud02c]), presented in chapter 5. The POVM used for this tracking
procedure is the one we will optimize in this section. Unfortunately, it is first introduced
in chapter 5. Hence, to avoid unnecessary repetition of facts, I ask the reader to scan the
beginning of chapter 5 (especially subsection 5.2.1) to become familiar with these POVMs before
continuing.

From now on, if not stated otherwise, |ψ〉 denotes a pure qubit state.

3.4.1 Constraint for a Single Measurement

To enhance the sequence of measurements (N -series) used for visualizing the evolution of |c1(t)|2
in real-time, one can optimize the individual measurement on which the sequence is based.
This is a first step towards the optimization of a whole sequence, currently under investigation
[Kle03]. Optimized N -series probably consist of adaptive single measurements. The sequences
used so far [Aud01] only have fixed parameters. Despite this restriction, impressive results have
been obtained (see, for example, figure 3 in [Aud01]). In this section, we will concentrate on the
optimization of a single measurement because it can be treated in a complete analytical manner.
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One N -series consists of N single measurements, each given by the set {Ms} of Kraus
operators (0 ≤ p0, p1 ≤ 1)

M+ =
√
p0|0〉〈0| +

√
p1|1〉〈1|

M− =
√

1 − p0|0〉〈0| +
√

1 − p1|1〉〈1| ,
representing a weak measurement of some ordinary observable, e.g. energy or spin. Therefore it
is of the same structure as example (3.17). Moreover, it is a non-adaptive scheme since p0 and
p1 (equivalently p̄ and ∆p; we use these two parametrizations interchangeably) are fixed for the
duration of the experiment, that is, all N -series. Optimizing this POVM is a straightforward
application of result (3.14). We choose p1 ≥ p0 without restriction of generality.

The optimality condition (3.14) reduces for d = 2 to

f =
[√

g +
√

2 − g
]2
. (3.19)

Calculating f and g yields

f =
∑

s=±
|tr[Ms]|2

= (
√
p0 +

√
p1)

2 + (
√

1 − p0 +
√

1 − p1)
2

= 2(1 +
√
p0p1 +

√

(1 − p0)(1 − p1)) ,

and accordingly (remember that Es = M †
sMs)

g =
∑

s=±
max{〈ψs|Es|ψs〉}

= p1 + 1 − p0 .

With this, the fidelity balance (3.19) reads
√
p0p1 +

√

(1 − p0)(1 − p1) =
√

1 − (p0 − p1)2 .

Above equation has two solutions: p0 = p1 (⇔ ∆p = 0) corresponds to the trivial POVM with
Es ∝

�
and is therefore excluded. Optimal single measurements for qubits are thus described by

p0 + p1 = 1 ⇔ p̄ =
1

2
. (3.20)

Besides trivial measurements, projective measurements are optimal too. With p̄ = 1/2 fixed,
∆p remains the only free parameter. What does that mean? Do these two parameters have an
intuitive meaning? Let us return to the FG-plane to answer these questions.

3.4.2 Partitioning the FG-Plane

We have to parametrize F and G with p̄ and ∆p to see their working in the FG-plane. Starting
from the results (3.6) and (3.7),

F =
1

3

(

2 +

√

p̄2 − 1

4
∆p2 +

√

(1 − p̄)2 − 1

4
∆p2

)

(3.21)

G =
1

6
(3 + ∆p) . (3.22)
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G in (3.22) measures the (average) resemblance of the guess with the unknown state, that
is, our knowledge about it. The more knowledge we obtain about a state, the more it gets
disturbed. Consequently, we can associate with ∆p the parameter displaying the strength5 of a
measurement. No measurement (and therefore no information about the state) corresponds to
∆p = 0 whereas projective measurements (and maximal information) have ∆p = 1, cf. figure
3.1. Unfortunately, no such concrete meaning for p̄ has been found.

Given ∆p and p̄ to construct any desired qubit POVM with Kraus operators {M±}, where
do they lie in the FG-plane? An answer to this question will illuminate the position of minimal
measurements in the FG-plane and the meaning of p̄.

To simplify our discussion, we plug (3.22) into (3.21) and obtain the following array of curves,

F (G, p̄) =
1

3

(

2 +

√

p̄2 − 9(G − 1

2
)2 +

√

(1 − p̄)2 − 9(G − 1

2
)2

)

, (3.23)

mapping each minimal qubit POVM (characterized through ∆p and p̄) to a certain point in the
FG-plane (the parameter ∆p is implicitly fixed by specifying G), shown in figure 3.2. We see

p̄ = 0.2

p̄ = 0.1

Flim(G)

G

F

p̄ = 0.5

p̄ = 0.4

p̄ = 0.3

0.54 0.58 0.62 0.660.5

1

0.9

0.8

0.7

Figure 3.2: Different trade-off curves for qubit POVMs {E±}. p̄ parametrizes the different trade-
off curves. p̄ = 1/2 corresponds to the optimal curve derived by Banaszek, cf. figure 3.1. Flimit(G)
divides minimal from non-minimal measurements.

different trade-off curves, parametrized by p̄. Except for p̄ = 1/2, to each curve (3.23) correspond
two values of p̄, because F (G, p̄) is symmetric in p̄, F (G, p̄) = F (G, 1 − p̄). Having decided on
a certain value of p̄ we can adjust the measurement strength with ∆p thus moving along the
specified curve, going from the left (∆p = 0) to the point marked by the curve Flim(G).

5Another indication for the interpretation of ∆p as the measurement strength comes from the level resolution
time Tlr, see [Aud01] and [Aud02b].
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Minimal vs. Non-Minimal

At this point, (3.23) is imaginary. No combination of values 0 ≤ p̄ ≤ 1 and 0 ≤ ∆p ≤ 1 can break
this ‘barrier’ set by Flim(G). In other words, no minimal POVM {Es} can possibly lie below
this limiting curve. Only non-minimal measurements can be found there. We thus narrowed
down the region in the FG-plane where those measurements are found.

Let us specify this last statement more precisely. Setting one root term in (3.23) equal to
zero and plugging the result p̄ = 3(G − 1/2) back in yields

Flim(G) =
1

3

(

2 +

√

1 − 6(G− 1

2
)

)

,
1

2
≤ G ≤ 2

3
.

With this finding, we can describe the distribution of minimal and non-minimal POVMs within
the FG-plane, cf. figure 3.2: The absolute upper bound is set by the optimal curve F (G, p̄ = 1/2),
corresponding to all minimal POVMs fulfilling (3.20). No other minimal qubit POVM can
improve that. Also minimal, but less effective, are all POVMs represented by F (G, p̄), lying
between F (G, 1/2) and Flim(G). The latter curve identifies the lower boundary for minimal
measurements. Below this point, only non-minimal POVMs can be found.

But it is wrong to think that only minimal POVMs lie within the slice bordered by F (G, 1/2)
and Flim(G).

Unitary Back-Action

Suppose we take some minimal POVM {Es}. In the FG-plane one point corresponds to it,
characterized by certain values of p̄ and ∆p or, equivalently, F and G. Now, we modify the
Kraus operators |Ms| by unitary operations Us,

|Ms| Us−→M ′
s = Us|Ms| .

Formally, this back-action Us renders the POVM non-minimal and our point within the slice
should presumably move somewhere outside this region. But this is, in general, not true.

From (3.6) and (3.7) we know that

F =
1

d(d + 1)

(

d+

N
∑

s=1

|tr[Ms]|2
)

, G =
1

d(d+ 1)

(

d+

N
∑

s=1

〈ψs|Es|ψs〉
)

.

Now G only depends on the effects Es and is therefore independent of Us (cf. equations (2.10)
and (2.11) on p. 10), whereas unitary parts influence the mean operation fidelity. They reduce
the value of F as we saw from our derivation of the optimal trade-off, cf. estimate (3.8). Hence,
our point within the slice of the FG-plane moves vertically downward by some amount δF ,
depending exclusively on the unitary back-action Us. It now can happen that δF = F − F ′ is
such that the point (F ′, G), representing the POVM {E ′

s}, lies again within the slice with some
curve F ′(G, p̄′) going through it. Thus, certain non-minimal POVMs can be transformed into
minimal ones by a suitable choice of p̄, compensating for the unitary part Us.

We saw that an appropriate choice of of p̄ can ‘compensate’ certain types of unitary back-
action, thus rendering it useless. Next, however, emphasis on these Us has to be put, because
they can work in favor of an enhanced mean operation fidelity.
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Chapter 4

Partial Reversal of a Non-Unitary

Operation by Unitary Back-Action

We showed in the last section that any non-minimal measurement cannot improve the trade-off
between information gain and disturbance. The argument (3.8) is based on the assumption that
nothing is known a priori about the quantum state |ψ〉, except that it is a pure state.

What happens if something is known about the state before measuring it? In particular,
we are interested in the following question: Given some a priori information about the initial
pure quantum state, is it possible to improve the mean operation fidelity using non-minimal
measurements?

This question is not only of academic interest, but has practical significance in quantum
computational tasks. Possessing the capability to partly reduce disturbances caused by non-
unitary processes (e.g. unavoidable noise, imperfect wires, etc.) with unitary quantum gates
could be a desirable feature of future quantum computers. At first sight, this seems unlikely,
because of the inherent different nature of non-unitary and unitary operations. However, we will
see that there exist unitary operations canceling specific non-unitary operations to some extent,
thereby increasing the fidelity.

Why are we focusing on F and not on the trade-off between F and G? Certainly, to every
mean operation fidelity F corresponds a mean estimation fidelity G, but we will not bother with
it for two reasons: First, G depends only on effects, is therefore independent of unitary back-
action terms. Second, a priori information influences the guess for |ψ〉, hence G depends on the
knowledge we have about the state. However, incorporating this knowledge into our guess is a
quite complicated issue we shall not be concerned with: The best guess, that is, the eigenvector
of Es to the highest eigenvalue, is only valid when nothing is known about |ψ〉 in advance; in
case of a priori information, this estimation strategy does not have to be optimal.

We will deal with qubits throughout this chapter and the qubit POVM {E±} introduced in
subsection 3.4.1. In particular, we choose p1 ≥ p0 without restriction of generality.

4.1 A Trivial Example

Let me clarify the idea behind this cancellation procedure by a trivial example. Suppose we
measure a known pure state |ψ̃〉 with a minimal Kraus operator

√
Es, |ψ̃s〉 =

√
Es|ψ̃〉/

√
ps. Since

the initial state and the operation are known, we can write down, given the orthonormal bases

29
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{|ψ̃〉, |ψ̃⊥〉} and {|ψ̃s〉, |ψ̃⊥
s 〉}, the unitary operation Us = |ψ̃〉〈ψ̃s|+ |ψ̃⊥〉〈ψ̃⊥

s | restoring the initial
state. By construction, Us is unitary. It maps the measured state and its orthogonal complement
to their respective initial counterparts. Effectively, the action of a minimal measurement has
been countermanded,

|ψ̃〉
√
Es−−−→ |ψ̃s〉 Us−→ |ψ̃〉 .

Of course, no information has been obtained from |ψ̃〉 through measurement, since everything
was known in advance. This fact makes it possible to construct such a unitary operation. If
we do not know anything about |ψ̃〉 in the first place, this feat would – has to – be impossible.
Otherwise information would be obtained without any disturbance. The state |ψ̃〉 could thus be
cloned which is prohibited by the no-cloning theorem [Woo82].

4.2 Incorporating a Priori Information

Our task consists of two parts: (1) representing knowledge about the pre-measurement state
within the fidelity picture, and (2) constructing some unitary back-action Us given this informa-
tion. In the following discussions, we will make use of the Bloch sphere. The reader not familiar
with this picture is referred to Appendix B.

4.2.1 Confining the Integration Volume

From the definition (3.4) on page 17 we already know how to include a priori information into
the mean operation fidelity,

F =

∫

dψ p(ψ)
∑

s=±
|〈ψ|Ms|ψ〉|2 .

It is the probability distribution p(ψ) which represents our knowledge about the pre-measurement
state. If nothing is known in advance, it is reasonable to assume equipartition, that is, each
state has the same probability 1/4π.

Given a general probability distribution p(ψ) over the surface of the Bloch sphere and a qubit
POVM {Es}, we can, in principle, calculate F . However, this will only be possible analytically
for a few cases. We therefore restrict ourselves to a more special case of a priori information.
We assume that the initial state lies – with equal probability – somewhere within a well defined
region Ω, given by

Ω := {(θ, ϕ) : θ1 ≤ θ ≤ θ2 ∧ ϕ1 ≤ ϕ ≤ ϕ2 with θi ∈ [0, π], ϕi ∈ [0, 2π]} .
For θ1 = 0, θ2 = π and ϕ1 = 0, ϕ2 = 2π we recover the whole surface of the Bloch sphere. The
‘sharp edges’ of Ω are not necessarily unphysical. Take, for example, a polarizer used in some
optical experiment. We want to make a statement about the polarization of the passed photon.
But due to the polarizer’s imperfect nature any adjusted direction is only known within some
margin of error. We therefore know the polarization of the photon to be within a well defined
region Ω (in general, equipartition of polarization angles within Ω is not given, but we assume
it here for simplicity).

With this restriction, we denote the modified fidelity by

FΩ(Ms) :=
1

N(Ω)

∫

Ω
dψ
∑

s=±
|〈ψ|Ms|ψ〉|2 . (4.1)
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The integration measure dψ reduces for qubits to a simple one in spherical coordinates,

∫

Ω
dψ →

∫ ϕ2

ϕ1

dϕ

∫ θ2

θ1

dθ sin θ .

Hence, normalization reads N(Ω) = (ϕ2 − ϕ1)(cos θ1 − cos θ2).

4.2.2 Constructing Us

With Ω, a (simple) representation of our knowledge about the pre-measurement state is available.
We now have to construct a unitary operation Us. The example provided in the last subsection
is a reasonable starting point for this.

In his dissertation ([Kon03], p. 63), Konrad showed that the Bloch vector of a qubit moves
due to a minimal unsharp measurement on a great circle of the Bloch sphere towards the Bloch
vector corresponding to the eigenvector of the Kraus operator

√
Es with the highest eigenvalue,

cf. figure 4.1. With this picture the construction of Us goes as follows: In a given region Ω, we

|ψ〉

|ψ−〉

|ψ+〉

|0〉

|1〉

√

E− =
√

1 − p0|0〉〈0| +
√

1 − p1|1〉〈1|

√

E+ =
√
p0|0〉〈0| + √

p1|1〉〈1|

Figure 4.1: Shift of the Bloch vector of |ψ〉 due to a measurement with the POVM {E±} and
results + and −. Here, p1 > p0. |ψ〉 moves on a great circle towards the eigenvector belonging to
the largest eigenvalue of the relevant Kraus operator

√

E±.

choose one specific state |ψ̃〉. A unitary operation can thus compensate the disturbance caused
by

√
Es. It is done by rotating the Bloch vector ñ of |ψ̃〉 about an axis lying in the xy-plane (cf.

figure B.1 in Appendix B). A rotation about the z-axis is useless since
√
Es moves the Bloch

vector ñ on a great circle towards one of the poles of the Bloch sphere. This geometric rotation
on the Bloch sphere translates into a rotation of states in Hilbert space. Therefore Us has the
form Us = exp {±i/2(αxsσx + αysσy)}. It can be further simplified if we rotate – after fixing |ψ̃〉
– the whole region Ω about the z-axis so that ñ lies in the yz-plane. This can always be done
without restriction of generality. Us thus corresponds to a rotation about the x-axis,

Us = exp {±iαs
2
σx} . (4.2)
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The angle of rotation αs is determined by

cosαs := ñ · ñs , (4.3)

the scalar product between the normed Bloch vectors of |ψ̃〉 and |ψ̃s〉 =
√
Es|ψ̃〉/√ps. In (4.2)

only αs/2 appears which is a leftover1 of this translation from real space to Hilbert space: The
scalar product (4.3) defines an angle between two real vectors, whereas (4.2) represents a rotation
of states in Hilbert space about half that angle.

Additional care has to be taken with the sign, indicating the direction of rotation. A mo-
ment’s thought shows that U+ = exp {−iα+/2σx} rotates a state counterclockwise, so we can
use it to compensate the action of

√
E+ on |ψ̃〉 (therefore the subscript ‘+’ in U+). Accordingly,

U− = exp {iα−/2σx} compensates the action of
√
E− by rotating ñ− clockwise.

So far, Us compensates the action of the Kraus operator
√
Es on our chosen state. What

happens to all other states within Ω? Since Us is fixed, each state in Ω experiences the same
rotation, that is, a movement along the great circle of ñ, shown in figure 4.2.

y

Ω

z

x

topview

Ω

U−
√

E−

|ψ̃s〉

ϕ

θ

|ψ̃s〉

|ψ̃〉

|ψ̃〉

Figure 4.2: Action of U− on |ψ̃〉 and two other states (dots) within Ω after a measurement with
√

E−. U− rotates each Bloch vector (only end points shown) along the great circle of the chosen
state ñ for which U− was constructed (left picture). This results in a deformation of Ω, due to
the curved surface of the Bloch sphere, see topview on the right (deformation: dashed region).

In this picture the mean operation fidelity FΩ is something like the mean geometric distance
between measured and unmeasured points on the surface. It then becomes clear why a back-
action term Us has a chance to increase FΩ. And why it does not work if the region extends over
the whole Bloch sphere: The improvement gained, for example, in the right half of the sphere
gets canceled in the left half, since the sign of Us gets flipped and the resulting rotation moves
all points in the same direction as

√
Es does, thus increasing the mean distance.

4.3 Partial Reversal – Preliminary Results

Having constructed Us (4.2) for a given region Ω (after suitably rotating it so that ñ lies in the
yz-plane), the fidelity can be calculated (see Appendix A.2 for the lengthy derivation). We start

1Actually, it is a property of the spinor group SU(2), used for describing particles with spin.
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discussing the results by stating them: I found that (4.1) can be written as a sum of two parts,

FΩ(Us
√

Es) = FΩ(
√

Es) + ∆FΩ . (4.4)

The first term is the fidelity calculated for minimal measurements. I will call it ‘minimal term’ to
distinguish it from the ‘difference term’ ∆FΩ which comprises both operator parts, back-action
Us and minimal part

√
Es. ∆FΩ will decide whether Us can improve on the fidelity or not,

that is

FΩ(Us
√

Es)
?
≥ FΩ(

√

Es) . (4.5)

4.3.1 Minimal Term

The minimal term FΩ(
√
Es) has the simple form

FΩ(
√

Es) =
1

8

(

3 − 1

3
f(θ1, θ2)

)

m(p0, p1) +
1

8

(

5 +
1

3
f(θ1, θ2)

)

, (4.6)

with m(p0, p1) :=
√
p0p1 +

√

(1 − p0)(1 − p1) representing the minimal Kraus operators
√
Es. In

this parametrization, m = 0 stands for projective measurements, m(p0, p0) = 1 for no measure-
ment at all (Es ∝ �

). Our knowledge Ω about the pre-measurement state is contained within
the function f(θ1, θ2),

f(θ1, θ2) := 1 + 2[cos (2θ1) + cos (2θ2)] + 4 cos θ1 cos θ2 . (4.7)

Before discussing this result further, we note that in the limit of no a priori knowledge, that is,
f(0, π) = 1, we recover the result of Banaszek,

FΩ(
√

Es) ≡ F (
√

Es) =
1

3
m(p0, p1) +

2

3
.

Notice that we drop the subscript on F if the region Ω equals the whole Bloch sphere.
Interestingly, (4.6) is – by virtue of (4.7) – independent of any phase information. How

does that come about? Remember that every minimal qubit POVM moves states along a great
circle on the surface of the Bloch sphere (cf. figure 4.1). Therefore any averaging over phases,
corresponding to a movement along lines of latitude, does not contribute to (4.6).

It is −3 ≤ f(θ1, θ2) ≤ 9, which implies that FΩ(
√
Es) is not necessarily larger than F (

√
Es).

In other words: For minimal measurements, information about the pre-measurement state can
increase as well as decrease FΩ(

√
Es) over the value of F (

√
Es). This somehow seems counter-

intuitive, since information about something usually helps in deciding on different alternatives.
The point is, that one is not using the given information for a decision.

Figure 4.3 shows an example of how different a priori knowledge can change the value of
FΩ(

√
Es) in comparison to F (

√
Es). Both plots display the relation between the two fidelities

for different regions ∆θ = θ2 − θ1. In the left plot ∆θ is centered around the meridian (θ = π/2)
of the Bloch sphere. In this case, ∆θ = 0 corresponds to the meridian circle; therefore F < 1
since no phase information is available (one does not know the position of |ψ〉 on the circle).
∆θ = π denotes the full Bloch sphere, hence FΩ = F . In the right plot ∆θ is centered around
the ‘north pole’, that is, the state |0〉. Now FΩ = 1 for ∆θ = 0 because the poles are point
regions. ∆θ = π corresponds to the upper half of the Bloch sphere. This shows that it crucially
depends on the given region (a priori information) whether FΩ or F has a higher value.
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Figure 4.3: Comparison of fidelities FΩ(
√
Es) and F (

√
Es) for different a priori information ∆θ =

θ2 − θ1. Left: ∆θ is centered around the equator (θ = π/2) of the Bloch sphere; thus ∆θ = π
denotes the full sphere. Right: ∆θ is centered around the state |0〉 (θ = 0). Hence ∆θ = π denotes
the upper half of the Bloch sphere. p0 = 0.3 and p1 = 0.7 were chosen for both plots.

Another interesting feature of the dependency of FΩ on the chosen region ∆θ comes from
the zeros of f(θ1, θ2). The only non-trivial2 region for which f(θ1, θ2) = 0, is given by

θ2 = θ1 +
2

3
π , 0 ≤ θ1 ≤ π

3
. (4.8)

For all ∆θ fulfilling (4.8), the fidelity takes on the same value FΩ = (3m(p0, p1) + 5)/8. These
‘∆θ-belts’ thus describe (from the fidelity point of view) the same information about the pre-
measurement state.

However, the minimal part FΩ is only half of the story, the important part in (4.4) being the
difference term ∆FΩ.

4.3.2 Difference Term

The difference term ∆FΩ is given by

∆FΩ =
1

N(Ω)

∫

Ω
dψ

{

∑

s=±

(

|〈ψ|σx
√

Es|ψ〉|2 − |〈ψ|
√

Es|ψ〉|2
)

sin2 αs
2

+
1

2
〈ψ|σy|ψ〉

[

(
√
p1 −

√
p0)〈ψ|

√

E+|ψ〉 sinα+ + (
√

1 − p0 −
√

1 − p1)〈ψ|
√

E−|ψ〉 sinα−
]

}

.

(4.9)

To decide whether inequality (4.5) is true for some regions Ω, we need to take a closer look at
the two terms in (4.9).

For the following discussion we assume that Ω is restricted to the right half of the Bloch
sphere, that is, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ π (cf. figure B.1 in Appendix B, p. 67). Furthermore,
p1 ≥ p0 without restriction of generality.

2That is, no point regions or circles. f(π/2, π/2) = −3 corresponds to the meridian circle, f(0, 0) = f(π, π) = 9
correspond to points |0〉 and |1〉, respectively.
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Term 2

The second term in (4.9) reads

1

2
〈ψ|σy |ψ〉

[

(
√
p1 −

√
p0)〈ψ|

√

E+|ψ〉 sinα+ + (
√

1 − p0 −
√

1 − p1)〈ψ|
√

E−|ψ〉 sinα−
]

. (4.10)

〈ψ|σy |ψ〉 =: y equals the y-component of the Bloch vector of |ψ〉. It is y ≥ 0 because of our
choice of Ω (if |ψ〉 lies in the xz-plane, y = 0). Going on to the bracket-term [·] we note that√
p1 −√

p0 ≥ 0 and
√

1 − p0 −
√

1 − p1 ≥ 0.
√
Es are positive operators, so by definition (this

is independent of our choice of Ω) 〈ψ|√Es|ψ〉 ≥ 0. The two rotation angles αs are confined to
the interval 0 ≤ αs < π, and thus sinαs ≥ 0 (αs = 0 would mean that |ψ̃〉 lies in one of the
poles of the Bloch sphere. αs ≈ π calls for a projective measurement, transporting, for example,
|ψ̃〉 ≈ |1〉 to the antipodal state |0〉).

Given our assumptions, (4.10) is greater or equal to zero. The bracket term [·] is hereby
greater or equal to zero, independent of Ω.

Term 1

For both3 parts of the sum

∑

s=±

(

|〈ψ|σx
√

Es|ψ〉|2 − |〈ψ|
√

Es|ψ〉|2
)

sin2 αs
2

(4.11)

to be positive, we need to decide whether |〈ψ|σx
√
Es|ψ〉|2−|〈ψ|√Es|ψ〉|2 ≥ 0 or not. To this end

we rewrite the terms in the difference as scalar products which can be interpreted geometrically.
Out of that interpretation will then arise physical conditions. The following argumentation is
valid for either s = + or s = −.

We start by defining the pure states

|ψ′〉 :=
√

Es|ψ〉/
√
ps and |ψ′′〉 := σx|ψ′〉 ,

having (since σx is unitary) norm equal to one, 〈ψ′|ψ′〉 = 〈ψ′′|ψ′′〉 = 1. Thus,

|〈ψ|σx
√

Es|ψ〉|2 − |〈ψ|
√

Es|ψ〉|2 = ps

(

|〈ψ|ψ′′〉|2 − |〈ψ|ψ′〉|2
)

. (4.12)

Subsequently, we omit the factor ps > 0 since it is irrelevant for deciding if (4.11) can be greater
than zero for certain POVMs and regions Ω. For a geometrical representation we rewrite (4.12)
using Bloch vectors: With (cf. Appendix B, p. 67)

ρ′ =
1

2
(

�
+ n′ · σ) , ρ′′ =

1

2
(

�
+ n′′ · σ)

and the identity tr[ρρ′] = |〈ψ|ψ′〉|2, (4.12) reads

|〈ψ|ψ′′〉|2 − |〈ψ|ψ′〉|2 = tr[ρρ′′] − tr[ρρ′]

=
1

2
(n · n′′ − n · n′) . (4.13)

3To decide whether one part of the sum is larger than the other is a far more difficult question to answer.
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Utilizing σiσj = δij
�

+
∑

k εijkσk, (k = x, y, z), the Bloch vectors n′ and n′′ evaluate to

n′ =





x′

y′

z′



 , n′′ =





x′

−y′
−z′



 . (4.14)

Because their components in the ex-direction are equal, they cancel in the difference (4.13) and
we can restrict ourselves to the 2-dimensional subspace V := span{ey, ez} (ei denotes Cartesian
unit vectors in � 3). If we further define by |n′| := |n′|V a 2-norm on V, (4.13) can be written

1

2
(n · n′′ − n · n′) =

1

2
|n| · |n′|(cos γ − cos β) .

Consequently,

|〈ψ|σx
√

Es|ψ〉|2 − |〈ψ|
√

Es|ψ〉|2 ≥ 0

reduces to the simple trigonometric relation

cos γ − cos β ≥ 0 (4.15)

we need to fulfill so that ∆FΩ ≥ 0.

y

z

n

n
′

β
γ

n
′′

Figure 4.4: Relative positions of Bloch vectors n, n′ and n′′ in the yz-plane spanned by V . Because
of (4.14), γ + β = π always holds. Here, n′ results from n by measuring it with

√

E+ (identify
(y = 0, z = 1) with the north pole of the Bloch sphere).

Figure 4.4 pictures the relative positions of states |ψ〉, |ψ ′〉 and |ψ′′〉 through their respective
Bloch vectors in V. Due to relations (4.14), γ + β = π is satisfied for all states within Ω. Thus,
to comply (4.15),

π

2
≤ β < π . (4.16)

That is a demand on the strength of the POVM. Remember, that n′ emerges from n by measur-
ing it. The angle by which n has to be moved is now restricted to relatively strong measurements,
characterized by the constraint (4.16).
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Figure 4.5: ∆FΩ as a function of Ω, represented by ∆ϕ. It is ∆θ = π and ∆ϕ is symmetric with
respect to the yz-plane, that is, ϕ = π/2. Thus, ∆ϕ = π/2 corresponds to the right half of the
Bloch sphere, whereas the full sphere has ∆ϕ = π. Interestingly, ∆FΩ > 0 for ∆ϕ > π/2. The
dashed zero line is shown for convenience. It is θ̃ = π/2, p0 = 0.2 and p1 = 0.8.

4.3.3 First Results

The preceeding discussion suggested that ∆FΩ ≥ 0 if Ω is restricted to the right half of the
Bloch sphere, that is, 0 ≤ θ, ϕ ≤ π. Indeed, this conjecture is correct as figure 4.5 shows. For
a fixed measurement Us

√
Es (θ̃ denotes the location of |ψ̃〉 used for constructing Us), ∆FΩ is

plotted as a function of Ω, represented by the phase interval ∆ϕ; since ∆θ = θ2 − θ1 = π, a
characterization of Ω by ∆ϕ is sufficient. ∆ϕ is symmetric with respect to the yz-plane, that
is, the great circle ϕ = π/2. As expected, ∆FΩ > 0 if Ω lies within the right half of the Bloch
sphere. Surprisingly, the positivity of ∆FΩ extends beyond that: now, 〈ψ|σy|ψ〉 < 0 and the
resulting negative term (4.10) is overcompensated by (4.11), up to the point ∆ϕ ≈ 2.1.

We saw in figure 4.3 that knowledge about the pre-measurement state does not necessarily
imply a higher fidelity. This leads us to the question: Do combinations of Us and Ω exist so that
FΩ(Us

√
Es) > F (

√
Es)? Figure 4.6 reveals the positive answer. The constant fidelity F (

√
Es) is

compared with FΩ(Us
√
Es) for θ̃ = π/2 and measurement p0 = 0.2, p1 = 0.8. Again we see that

the noticeable (several percent compared to F (
√
Es)) increase in fidelity also holds for regions

Ω extending over the right half of the Bloch sphere.

To complete this short compilation of results, let us take a closer look at how the mea-
surement parameters influence the fidelity difference ∆FΩ. The left plot of figure 4.7 displays
the dependency of ∆FΩ on the measurement strength ∆p for optimal measurements p̄ = 1/2,
θ̃ = π/2 and Ω being the right half of the Bloch sphere. ∆FΩ increases with ∆p, a result which
is consistent with requirement (4.16), as stronger measurements are likely to yield ∆FΩ > 0.
Interesting is the almost quadratic progression. However, this could also be due to the special
choice of parameters p0, p1 and θ̃.

The latter is subject of the right plot in figure 4.7. Here, the dependency of ∆FΩ on the
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Figure 4.6: Comparison of FΩ(Us

√
Es) with constant F (

√
Es) for different Ω, expressed by ∆ϕ

since ∆θ = π. Notice the absolute gain in fidelity due to Us and Ω. As in figure 4.5, FΩ(Us

√
Es)

drops below F (
√
Es) at ∆ϕ > π/2. It is θ̃ = π/2 and p0 = 0.2, p1 = 0.8.
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Figure 4.7: Left: Dependency of ∆FΩ on the measurement strength for minimal measurements
with p̄ = 1/2. Right: Influence of the position of |ψ̃〉 on ∆FΩ. The peculiar two-maxima structure
is probably due to a characteristic trait of the qubit POVM {E±}; see also figure 2.4 on page 65
of [Kon03]. It is p0 = 0.2, p1 = 0.8 and Ω equals the right half of the Bloch sphere.
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position θ̃ of our chosen state |ψ̃〉 is investigated. The prominent feature is the two-maxima
structure. This could be due to the special POVM we used in our calculations, see also figure
2.4 on page 65 of [Kon03]. The structure gets unsymmetrical if the measurements become non-
optimal, that is, p̄ 6= 1/2. However, numerical examples indicate that a change of ∆p and Ω do
not destroy this feature.

The results found here allow for a more thorough investigation. Ideas for further work are
given in the outlook, see chapter 7.
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Chapter 5

Intermezzo: Real-Time Visualization

of Rabi-Oscillations using Weak

Measurements

As the title already indicates this chapter is intended as a transition from questions related
to state estimation towards parameter estimation discussed in chapter 6. So far we discussed
quantum state estimation and the optimal trade-off between information gain and disturbance.
From this compromise we derived optimal measurements for qubits and investigated the influence
a unitary back-action – in combination with information about the pre-measurement state – has
on the fidelity.

The motivation to optimize qubit POVMs {E±} in section 3.4 stems from the desire to im-
prove the real-time visualization of a qubit’s Rabi oscillations ([Aud01], [Aud02b] and [Aud02c]).
Besides measurements, the algorithm of how to find a ‘best guess’ for the variable used to char-
acterize the evolution of the monitored state can be subject to optimization. This will be the
content of chapter 6, where we discuss – in addition to the one described in section 5.3 – two
different estimation schemes for the characteristic parameter |c1(t)|2.

We will first outline the overall scheme (section 5.1) before reviewing [Aud01] and, in detail,
the key ingredients for our discussion of parameter estimation in the next chapter: namely the
POVM used for tracking (section 5.2) and the algorithm for estimating |c1(t)|2 (section 5.3).
Section 5.4 introduces the mean square deviation D as the criterion defining the quality of a
guess.

Throughout this and the following chapter we apply terminology from probability theory
used in statistical inference of parameters. See also Appendix C for a compilation of definitions
as well as [Lar83] and [Kre70] for thorough accounts.

5.1 Real-Time Monitoring in a Nutshell

Under the influence of a periodic driving potential, the resulting motion of a normalized qubit
state (Schrödinger picture)

|ψ〉 = c0(t)|0〉 + c1(t)|1〉 (5.1)

involves oscillations of the probabilities |c0(t)|2 and |c1(t)|2, called Rabi oscillations. Usually
they are measured using projective measurements. For this purpose an ensemble is prepared

41
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in the initial state and a projection measurement is carried out at time t0 on each ensemble
member thus leading to the determination of |c1(t0)|2. Repeating the procedure for different
times result in the Rabi oscillations of |c1(t)|2.

In [Aud01] and [Aud02c] Audretsch et al. considered the situation where only one qubit is
available and the objective is to visualize its Rabi dynamics in real-time. For this purpose the
special class of unsharp measurements is employed.

To monitor the evolution of |c1(t)|2, the qubit is subjected to a sequence of unsharp mea-
surements with a POVM {E±} (how unsharp a measurement has to be shall not be of concern
to us here). Successive measurements are separated by a time τ > 0 during which the system
evolves freely. The duration of a measurement δτ is assumed to be much smaller than τ , thus
δτ = 0 is justified. The obtained sequence (e.g. − + + − + + − − − + − − − + + − · · · ) of
measurement readouts is then split into M blocks of N , called N -series. From each N -series the
relative frequency r = N+/N of positive results + is used to calculate a ‘best guess’ gr(tm) for
|c1(tm)|2 at time tm (m = 1, . . . ,M), denoting the end of the respective N -series (for example
t1 = Nτ identifies the end of the first N -series). The sequence gr(t1), . . . , gr(tM ) represents the
approximate visualization of the qubit’s Rabi oscillations |c1(t)|2.

5.2 Single Measurement and N-Series

In classical physics it is possible to track the evolution of an individual system without disturbing
it. In quantum mechanics, this can only be achieved approximately. Projective measurements
are not suited for this purpose since they severely alter the system’s dynamics. In fact, a
sequence of projection measurements results in the well-known Zeno effect, a suppression of the
original dynamics by measurement (the modified Zeno dynamics is almost perfectly traceable).
In our case, Quantum Non-Demolition1 (QND) measurements are no alternative either since
they require for non-trivial dynamics (i.e. a Hamiltonian H 6= �

) an observable with continuous
spectrum [Per89]. We are thus forced to resort to generalized measurements.

5.2.1 Motivating the Single Measurement {E±}
These POVMs have to fulfill two complementary conditions:

1. The measurement must not disturb the system too much, so that its evolution remains
close to the undisturbed case.

2. The coupling of the measurement apparatus to the qubit should nevertheless be so strong
that the readout shows accurately enough the modified dynamics of the system (including
the disturbance by the measurement).

What kind of POVM complies with these two demands? The qubit (5.1) is given in the or-
thonormed basis states {|0〉, |1〉} which are eigenstates of a sharp observable A; this could be,
for example, energy or spin. It is therefore advisable to consider minimal measurements which
are diagonal in that basis: We specify the measurement to have only two outcomes or pointer

1The characteristic trait of QND measurements is represented by the fact, that the system under study is at
all times in an eigenstate of the measured observable. Hence the term ‘non-demolition’.
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readings, denoted by + and −, with Kraus operators

M+ := u+
0 |0〉〈0| + u+

1 |1〉〈1|
M− := u−0 |0〉〈0| + u−1 |1〉〈1| .

We further require that u+
0,1 and u−0,1 be positive. An overall phase factor exp {iϕ±} is omitted

without loss of generality.
Why do we choose a minimal POVM which commutes with the sharp observable A of the

system?
Since the measurement scheme contains consecutive measurements, the post-measurement

state should not be altered qualitatively, i.e., a superposition of states |0〉 and |1〉 should, though
modified, remain a superposition. We therefore require diagonality of the Kraus operators in
the {|0〉, |1〉}-basis.

The minimality (and therefore the positivity of u+
0,1 and u−0,1) of M± ensures that there is no

unnecessary disturbance of the state (5.1). What does ‘unnecessary’ mean? Suppose we take
a non-minimal Kraus operator M±. It can be split due to the polar-decomposition theorem
into a minimal part |M±| and a unitary back-action term U±. The minimal part is, because
of its relation to the effects E± = |M±|2, connected to the acquisition of information. The
unitary evolution U± represents an additional Hamiltonian evolution not leading to any increase
of information about the system (see, for example, [Wis95]). It should therefore be set as U± =

�

(neglecting a global phase factor).
Why U± 6= �

is indeed obstructive can best be seen in the Bloch sphere picture: For the
non-minimal Kraus operators M± to be diagonalizable (to comply condition 1. on page 42),

they have to be normal, that is, [M †
±,M±] = 0, which amounts to [|M±|2, U±] = 0. Hence, U±

and |M±| have to be diagonal in the same basis. Now if U± is diagonal with respect to {|0〉, |1〉}
it can be written as U± = exp {−iθ±σz} for some angles θ± and σz as the Pauli operator.
The resonant Rabi oscillations that our qubit (5.1) performs are represented by a rotation of
the normalized Bloch vector in the yz-plane (given that the initial state lies in this plane). A
minimal measurement induces a change of the state within the yz-plane, cf. figure 4.1 on page
31. U± on the other hand rotates the Bloch vector of |ψ〉 about the z-axis thereby leaving the
yz-plane. As a consequence, U± cannot compensate the inevitable influence of |M±|. Moreover,
in a sequence of measurements, U± heavily disturbs the original Rabi oscillation one is trying to
visualize. Therefore we have to choose U± =

�
in order to disturb the Rabi oscillations by the

action of M± as little as possible. In real experiments, any non-trivial U± can be compensated
by means of feedback (cf. Wiseman [Wis95]).

Having motivated the POVM {E±}, we introduce

p0 := (u+
0 )2 = 1 − (u−0 )2 , p1 := (u+

1 )2 = 1 − (u−1 )2 ,

and the parameters

p̄ :=
1

2
(p0 + p1) , ∆p := p1 − p0

used to characterize the single measurement. Because {E±} constitutes a POVM, we have
0 ≤ p0, p1 ≤ 1. Assuming further p1 ≥ p0, p̄ and ∆p are likewise confined to the unit interval.
With this parametrization at hand, the POVM writes

E+ := p0|0〉〈0| + p1|1〉〈1|
E− := (1 − p0)|0〉〈0| + (1 − p1)|1〉〈1| . (5.2)
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Accordingly, the probabilities read p± = 〈ψ|E±|ψ〉, with p+ + p− = 1. In the limiting case
p0 = 0 and p1 = 1 a projection valued measure of the sharp observable A is obtained. Thus
∆p = 1 corresponds to a projective measurement of A. In the opposite limit ∆p � 1 the
effects are nearly proportional to the identity operator and the probabilities p± of the outcomes
become nearly independent of the initial state. This property justifies to call the POVM {E±}
a smeared/unsharp version of the sharp hermitian observable A.

5.2.2 One N-Series

With the POVM (5.2) at hand, we now perform on the initial state |ψ0〉 a sequence of N unsharp
measurements with the same parameters in an immediate succession. This is called an ‘N -series’.
Using the same set of parameters (p0, p1) for the whole series necessarily renders the scheme
non-adaptive. The phrase ‘immediate succession’ makes the whole sequence unphysical, since
any real measurements are separated in time by τ > 0. However, it turns out (cf. Appendix B
of [Aud01]) that the results derived from this assumption τ = 0 can be applied to the case of N -
series with dynamical evolution between two single measurements if the number of measurements
N in one N -series fulfills2

(N − 1)2 � max{u+
0 , u

−
1 }

2max{|u+
1 − u+

0 |, |u−1 − u−0 |}
TR
πτ

. (5.3)

Here it was assumed that the matrix elements of the operation M+ satisfy u+
0 > u+

1 . Otherwise
the indices 0 and 1 have to be permutated. TR denotes the Rabi period.

In the following we assume that N is chosen according to (5.3), that is, we do not have to
worry about any Hamiltonian evolution of the system between two measurements. Since the
Kraus operators M+ and M− commute, the final state after the N -series does not depend on
the order of + and − results. For any particular sequence of results with a total number N+ of
results + the normalized state |ψ〉 is transformed according to |ψ〉 →M(N+, N)|ψ〉 with

M(N+, N) = M
N+

+ M
N−N+

− .

In view of the ‘best guess’ defined in the next section, we restrict ourselves to the information
that the total number of + results is N+, regardless of when they occurred in the sequence.
That is, we are only interested in the relative frequency r := N+/N of positive results. r
will be the measurement outcome attributed to one N -series. Thus, by interpreting the N -
series conceptually as one single measurement, we have to work out the effects related to this
measurement.

The conditional probability p(N+

∣

∣N, |c1|2) that N+ positive results (given N and |c1|2) are

measured in one N -series is
( N
N+

)

times the probability that a particular ordered sequence of N+

positive and N −N+ negative results is obtained:

p(N+

∣

∣N, |c1|2) = 〈ψ|E(N+, N)|ψ〉 ,

2With dynamical evolution U = exp {−iHτ} (~ = 1) in between two measurements, the M± no longer
commutate with U . This residual commutator accumulates the longer one N -series gets. Hence restriction (5.3).
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where the effect E(N+, N) is given by

E(N+, N) =

(

N

N+

)

M †(N+, N)M(N+, N)

=

(

N

N+

)

[

p
N+

0 (1 − p0)
N−N+ |0〉〈0| + p

N+

1 (1 − p1)
N−N+ |1〉〈1|

]

. (5.4)

The corresponding conditional probability is a linear combination of binomial distributions,

p(N+

∣

∣N, |c1|2) =

(

N

N+

)

[α0 + (α1 − α0)|c1|2] . (5.5)

Here we introduced the abbreviation αi := p
N+

i (1−pi)N−N+ (i = 0, 1) and used |c0|2 = 1−|c1|2.
Notice, that we only care about measurement statistics (5.5) and do not pay attention to the
state after one N -series.

5.3 Best Guess for |c1|2

So far we motivated a special POVM {E±}, representing a smeared version of the sharp ob-
servable A, suited for the purpose of tracking the evolution of |c1(t)|2 in real-time. To this end,
sequences of unsharp measurements were defined and effects for one such N -series derived. In do-
ing so we conceived the series conceptually as one single measurement with POVM {E(N+, N)}
and relative frequency r = N+/N as measurement outcome.

Now, to approximately monitor the evolution of |c1(t)|2, several N -series at different times tm
(m = 1, . . . ,M) are necessary, each of them yielding a best guess we are now going to motivate.

Imagine we have an ensemble of initial states |ψ0〉 and we make measurements on this en-
semble with the POVM (5.4). Then, the statistical expectation value of the relative frequency
of positive results r = N+/N is given by

〈r〉 :=

N
∑

N+=0

N+

N
p(N+

∣

∣N, |c1|2)

= p0|c0|2 + p1|c1|2 . (5.6)

Based on (5.6) it is easy to relate |c1|2 of the initial state with the expectation value 〈r〉 of an
N -series of unsharp measurements starting with |ψ0〉,

|c1|2 =
〈r〉 − p0

∆p
. (5.7)

The important point here is that |c1|2 and 〈r〉 refer to an ensemble represented by the state |ψ0〉.
If only one realization of |ψ0〉 is available, only one N -series can be measured and only a

best guess gr for the quantity |c1|2 can be obtained. Equation (5.7) suggests to choose3 it as

gr :=
r − p0

∆p
. (5.8)

3In [Aud01], gr is denoted by G1. Here, the capital letter G could be mistaken for the mean estimation fidelity.
In this thesis, every guess will be denoted by g, with a subscript referring to the method of derivation.
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By virtue of (5.7), gr is an unbiased estimator for the unknown value of |c1|2. This property
represented the main motivation for the definition of gr by equation (5.8). For r < p0, the
guess (5.8) becomes negative. This seems unphysical at first, but it is the unbiasedness which
guarantees that gr fluctuates (in the long run) around the true value of |c1|2.

Although (5.8) was constructed in order to meet the unbiasedness criterion, I found an
alternative motivation of gr based on ensembles (the following subsection does not contain an
alternative derivation of gr, because gr was not derived in the first place but taken from an
analogy).

5.3.1 Motivating gr From Ensembles Using Maximum Likelihood

Suppose we are given an ensemble of N identical qubits |ψ〉 = c0|0〉+ c1|1〉. On each member of
the ensemble a measurement is made with the same POVM {E±} (5.2). The aim is to calculate
an estimate for |c1|2 given the sequence of N measurement results (e.g. + + −− + + − + −−
−− + − · · · ). To this end, the maximum likelihood method is employed.

The maximum likelihood method for generating estimators of unknown parameters is a
very powerful technique, giving – in general – ‘good’ estimators. It can be described as follows:
Suppose we draw a sample {x1, . . . , xN} from the random variable X, whose probability function
pX(u) depends on an unknown parameter u. The maximum likelihood estimator ũ is then
defined as the value which maximizes the so-called likelihood function l(u) = pX(x1) · · · pX(xN ),
the joint probability function of the sample, evaluated at the observed sample values x1, . . . , xN .

With the POVM {E±}, the probabilities to get + or − in a measurement are p+ = 〈E+〉 =
p0|c0|2 + p1|c1|2 = p0 + ∆p|c1|2 and p− = 1 − p+. The estimator |c̃1|2 maximizes the likelihood
function

l(|c1|2) =

(

N

N+

)

p
N+

+ (1 − p+)N−N+

=

(

N

N+

)

(p0 + ∆p|c1|2)N+(1 − p0 − ∆p|c1|2)N−N+ . (5.9)

Since we are not interested in the order of results + and −, the binomial factor
( N
N+

)

has to be

included. Maximizing (5.9) requires the first derivative4 to vanish,

∂l

∂|c1|2
= ∆p(p0 + ∆p|c1|2)N+−1(1 − p0 − ∆p|c1|2)N−N+−1

·
[

N+(1 − p0 − ∆p|c1|2) − (N −N+)(p0 + ∆p|c1|2)
] !

= 0 . (5.10)

This equation has only one physically reasonable solution: ∆p = 0 can be discarded at once, just
as |c̃1|2 = −p0/∆p and |c̃1|2 = (1 − p0)/∆p, derived from setting the second and third product
term in (5.10) equal to zero. Both estimators solely depend on the parameters characterizing the
POVM. Hence they are constant. In addition, −p0/∆p < 0 renders this estimator unphysical.
We are thus left with the fourth term in (5.10), which gives

|c̃1|2ML
=
N+ −Np0

N∆p
=
r − p0

∆p
= gr . (5.11)

4In general, l(|c1|2, p0,∆p,N+, N) is a function of several variables. In this special case, everything but |c1|2
is fixed and we could have replaced the partial derivative by d/d|c1|2.
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This peculiar result merits further discussion. Originally, gr was constructed as an unbiased
estimator, starting from the results of one N -series. That is, a sequence of measurements is
conducted on one and only one state. The derivation of (5.11) started from an ensemble, that
is, N separate measurements are carried out on an ensemble of identical states. Why do both
methods yield the same estimator?

Obviously, these two conceptually different procedures agree on the level of estimators. How-
ever, in the ensemble approach, independency of measurements is guaranteed in contrast to the
N -series. So both methods are not only conceptually but physically different. This fact is
expressed in the mean square deviation D (see section 5.4 for the definition):

lim
N→∞

D(gr) = Dprojective (5.12)

lim
N→∞

D(|c̃1|2ML) = 0 . (5.13)

In case of an infinite ensemble, an infinite amount of information is available and D(|c̃1|2ML) has
to go to zero (|c1|2 is known exactly). For the N -series, infinite N means infinitely many unsharp
measurements. That is equivalent ([Kon03], p. 58) to one projective measurement. Hence, the
lower limit Dprojective, derived in the forthcoming section.

To sum up: Although two physically different measurement schemes yield the same guess
for |c1|2, their dissimilarity shows up on the level of mean square deviations.

5.4 Mean Square Deviation as Measure of Quality

Experimental physicists often use the standard deviation in their statistical analysis of measured
data. This stochastic concept quantifies the variation of a measured quantity X by the average
quadratic distance of all obtained values from the measured average 〈X〉,

σ2(X) = 〈(X − 〈X〉)2〉 .

The average 〈·〉 is hereby taken with respect to the probability distribution pX underlying X.
In the real-time visualization of Rabi oscillations, we are interested in an estimate g preferably

close to the actual value of |c1|2 for which a measured average no longer exists. However, we
can define – in analogy to σ2 – the mean square deviation D,

D(g) := 〈(g − |c1|2)2〉

=

N
∑

N+=0

p(N+

∣

∣N, |c1|2)(g − |c1|2)2 .

Although this measure is well defined it still depends on |c1|2, which is – in general – unknown
to us. If, however, some information about |c1|2 is available, D indicates quantitative differences
between estimators.

At large, D leads us to a strange situation – to evaluate our guess about |c1|2, we need to know
|c1|2! A way out of this dilemma is not to look at the mean square deviation for a particular |c1|2
but at the deviation averaged additionally over all possible |c1|2 with the probability distribution
p(|c1|2). For reasons to become clear in section 6.3, the ‘prior’ p(|c1|2) expresses our a priori
knowledge about |c1|2. Since 0 ≤ |c1|2 ≤ 1 is the only information we have, it is reasonable to
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assume equipartition in the unit interval, hence p(|c1|2) = 1/(1−0). With this, D averaged over
all states5 |c1|2 reads

D(g) :=

∫ 1

0
d|c1|2 D(g)

=

∫ 1

0
d|c1|2

N
∑

N+=0

p(N+

∣

∣N, |c1|2)(g − |c1|2)2 . (5.14)

We will use the term mean square deviation synonymously for D and D. In case of ambiguities,
the respective definition is given.

5.4.1 Calculating D(gr)

We start by calculating D(gr):

D(gr) = 〈(gr − |c1|2)2〉

=

[(

p1

∆p
+ |c1|2

)

− 〈r〉
∆p

]2

+
1

∆p2

[

〈r2〉 − 〈r〉2
]

=
[

〈gr〉 − |c1|2
]2

+
σ2(r)

∆p2
.

Since gr is unbiased, the first bracket vanishes and D(gr) becomes proportional to the variance
of r = N+/N . Calculating this variance yields

D(gr) = |c0|2|c1|2 +
1

N

|c0|2p0(1 − p0) + |c1|2p1(1 − p1)

∆p2
.

In case of a single measurement, N = 1, D(gr) assumes its minimal value |c0|2|c1|2 for projective
measurements, ∆p = 1. For all other choices of parameters N , p0 and p1, there is a larger
deviation. This again shows that these measurements are unsharp, because they provide less
reliable information about |c1|2. For a given experimental setup, i.e., fixed Kraus operators,
D(gr) decreases with an increasing number of repetitions N so that it is favorable to refer to
the N -series.

Using the parametrization p̄ = (p0 + p1)/2 and ∆p = p1 − p0, D(gr) is given by

D(gr) =
1

6
+

1

N∆p2

(

p̄(1 − p̄) − ∆p2

4

)

. (5.15)

Proving (5.12) and (5.13)

We are now able to prove the qualitative difference between the two estimators gr and |c̃1|2ML,
expressed by their limiting behavior for N → ∞, (5.12) and (5.13). From (5.15) we see that

lim
N→∞

D(gr) =
1

6
=: Dprojective .

5This equivalence
R

d|c1|2 ≡
R

dψ is only valid if one assumes equal distributions for azimuth and polar angles.
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To calculate D for the maximum likelihood estimate |c̃1|2ML, we have to use l(|c1|2) as probability
distribution instead of p(N+

∣

∣N, |c1|2):

D(|c̃1|2ML) = 〈(|c̃1|2ML − |c1|2)2〉

=

∫ 1

0
d|c1|2

N
∑

N+=0

l(|c1|2)(|c̃1|4ML − 2|c̃1|2ML|c1|2 + |c1|4)

=

∫ 1

0
d|c1|2

p+(1 − p+)

N∆p2
.

The integral as well as the integrand are bound for non-trivial measurements (i.e. ∆p 6= 0), so
it suffices to look at the latter:

lim
N→∞

D(|c̃1|2ML) = 0 .
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Chapter 6

Parameter Estimation

Chapter 3 dealt with the estimation of pure quantum states and the corresponding optimal
measurements. In particular, POVMs describing unsharp observables were of interest, since
they are used in the real-time visualization of Rabi dynamics, reviewed in chapter 5. There, a
qubit’s state evolution |ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉 is indirectly monitored by |c1(t)|2, respectively
the sequence gr(tm), m = 1, . . . ,M .

Motivated by this work [Aud01], the question arose whether there exist better ways for
processing information obtained from one N -series into a guess for |c1|2. Sections 6.2 and 6.3
deal with this question. As laid down with the fidelity F in chapter 3, a measure is needed
defining the quality of a guess. This will be the purely classical statistical measure D already
introduced in section 5.4. Although our system under study (qubit performing Rabi oscillations)
is quantum mechanical, processing measured data only requires classical probability theory. The
focus is therefore shifted from questions of state inference and optimization of measurements,
to questions of parameter estimation. A comparison of all developed guesses in section 6.4
concludes this chapter.

6.1 Stating the Problem

For a given POVM {E(N+, N)} (5.4) the sequence of results S (e.g. S = {++−−+−++− · · · })
of one N -series is governed by the probability distribution (5.5),

p(N+

∣

∣N, |c1|2) =

(

N

N+

)

[α0 + (α1 − α0)|c1|2] . (6.1)

It gives the probability that N+ times out of N the result reads +, regardless of its occurrence

within the sequence; remember, that αi = p
N+

i (1− pi)N−N+ (i = 0, 1) is assumed to be constant
during the N -series. In addition, p1 > p0 is chosen without loss of generality.

In writing down (6.1) we conceived the whole N -series as one single measurement with the
number N+ as measurement outcome. Unfortunately, we are not able to calculate p(N+

∣

∣N, |c1|2)
unless the value of |c1|2 is known. So far, the only information available is contained in the
measured sample. Thus, our problem is to find an estimate g for |c1|2, given the information of
the sample S. For this kind of estimation problem, probability theory provides a set of tools;
see, for example, chapter 7 of [Lar83] and chapter 12 of [Kre70].

Notice that we are entirely dealing with classical probability theory. The fact that (6.1)
derives from a quantum mechanical process is of no interest here.

51
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6.2 Revisiting Banaszek: Maximum Likelihood Estimator

Our first approach (besides the estimate gr presented in section 5.3) to the aforementioned
estimation problem employs the maximum likelihood method as a tool. Banaszek [Ban01a]
already used it implicitly for samples of size one in his optimal assignment of guesses for |ψ〉, cf.
subsection 3.3.1 on page 18. To see this, we restate the argument: Maximization of the mean
estimation fidelity

G =
1

d(d+ 1)

(

d+
∑

s

〈ψs|Es|ψs〉
)

yields as best guess for |ψ〉 the eigenvector of Es to its highest eigenvalue. In effect, the prob-
ability distribution 〈ψs|Es|ψs〉 with the unknown parameter ‘ψs’ is maximized for the sample
consisting of the measurement result s. For example, taking E+ = p0|0〉〈0| + p1|1〉〈1| as effect
(p1 > p0) and |ψ+〉 = c+0 |0〉 + c+1 |1〉 for the guess, we get

〈ψ+|E+|ψ+〉 = p0 + ∆p|c+1 |2 =: p(+
∣

∣|c+1 |2) .

p(+
∣

∣|c+1 |2) is a straight line, with its maximum p(+
∣

∣1) = p1 at the boundary. So the best guess
for |ψ〉 is |c+1 |2 = 1 ⇔ |ψ+〉 = |1〉. With the same line of reasoning, |ψ−〉 = |0〉. Applying this
result to the problem of estimating |c1|2 given the sample S is now straightforward.

6.2.1 Estimator for N-Series

In case of an N -series the sample of size one consists of the number N+ and the probability
p(N+

∣

∣N, |c1|2) itself is the likelihood function we need to maximize. Since

∂

∂|c1|2
p(N+

∣

∣N, |c1|2) =

(

N

N+

)

(α1 − α0) 6= 0 ,

the global maximum of p(N+

∣

∣N, |c1|2) again lies at the boundary. Looking at (6.1) we see that
|c1|2 = 1 maximizes p(N+

∣

∣N, |c1|2) if α1 > α0. Otherwise, |c1|2 = 0 is the best choice. Thus, we
found a maximum likelihood estimate gML for |c1|2, given the sample information S:

gML :=

{

1 if α1 > α0 ,

0 if α1 < α0 .
(6.2)

The condition α1 = α0 implies E(N+, N) ∝ �
, that is, no measurement at all.

At first sight, (6.2) does not look like a very accurate guess for a variable which varies
continuously within the unit interval. We will see, however, that when compared to other
estimators via D, it is favorable to refer to gML rather than to gr.

6.2.2 Mean Square Deviation D(gML)

From the definition for D,

D(gML) = 〈(gML − |c1|2)2〉
= 〈g2

ML
〉 − 2〈gML〉|c1|2 + |c1|4 .
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Since the average 〈gML〉 is taken over all possible measurement outcomes N+, we need to include
the maximum likelihood estimate for every sample N+. Therefore,

〈gML〉 =
∑

N+∈I
1 · p(N+

∣

∣N, |c1|2) +
∑

N+∈J
0 · p(N+

∣

∣N, |c1|2) = 〈g2
ML〉 , (6.3)

with the index sets I := {N+ : α1 > α0} and J := {N+ : α1 < α0} reflecting the estimation
algorithm: The best guess gML = 1 maximizes the corresponding probability; for example, if
there is only one measurement, N = 1, (6.3) simplifies to 〈gML〉 = 1 · p+ + 0 · p−.

With 〈gML〉 given, D(gML) reads

D(gML) =

∫ 1

0
d|c1|2

[

(1 − 2|c1|2)〈gML〉 + |c1|4
]

. (6.4)

Because the summation in (6.3) is performed over the index set I, D(gML) cannot be evaluated
in closed form for arbitrary p0 and p1. There exists, however, a closed solution for the special
case p̄ = 1/2: The condition α1 > α0 transforms into

N+ >
N

1 + f(p0, p1)

with f(p0, p1) := [ln p1 − ln p0]/[ln(1 − p0) − ln(1 − p1)]. If p̄ = 1/2 then f(p0, 1 − p0) = 1 and
the average (6.3) reads1

〈gML〉 =

N
∑

N+=[N/2]+1

p(N+

∣

∣N, |c1|2)

=
2−NN !(1 − ∆p2)−[N

2
]

(∆p2 − 1)Γ(N − [N2 ])Γ(2 + [N2 ])

·
{

(|c1|2 − 1)(1 − ∆p)2+2[ N

2
](1 + ∆p)N 2F1(1, 1 −N + [

N

2
], 2 + [

N

2
],

∆p− 1

∆p+ 1
)

− |c1|2(1 + ∆p)2+2[ N

2
](1 − ∆p)N 2F1(1, 1 −N + [

N

2
], 2 + [

N

2
],

∆p+ 1

∆p− 1
)
}

.

(6.5)

The functions 2F1(a, b, c, z) are solutions of the hypergeometric differential equation z(1−z)y ′′+
[c− (a+ b+ 1)z]y′ − aby = 0, given in their integral form by

2F1(a, b, c, z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1 − t)c−b−1(1 − tz)−a .

Although analytical, (6.5) is quite clumsy and useless for general calculations. For a com-
parison of different estimators, we will always refer to special values of N , for which D(gML) is
easily calculated.

1The Gauß-bracket [N/2] denotes the greatest integer smaller or equal to N/2; for example, [15/2] = 7. Γ(c)
is the usual gamma function.
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6.3 Incorporating a Priori Information: Bayes’ Theorem

Both estimation procedures presented so far only use information contained in the measured
sample S to calculate the respective estimators gr and gML. These approaches ignore information
about |c1|2, eventually existing before any measurement is performed. Including this additional
prior information about the unknown parameter yields a new estimator we are going to derive
in this section. The scheme is based on Bayes’ theorem for conditional probabilities and consists
of three steps:

1. Conversion of the prior information about |c1|2 into a probability distribution.

2. Calculation of the a posteriori distribution on the basis of the sample information S and
the prior distribution via Bayes’ theorem.

3. Calculation of the estimator from the a posteriori distribution.

The next two subsections illustrate this method in general, before we apply it to the problem of
one N -series.

6.3.1 Prior Information and a Posteriori Distribution

Suppose we are given a random variable X whose probability distribution p depends on an
unknown parameter θ. ‘Unknown’ means that we know the functional form of p but not the
concrete value of the parameter θ. Take, for example, a Poisson distribution p = exp (−µ)µx/x!.
Its functional form (Poissonian) is known but the mean µ is unknown to us and shall be estimated
with the help of an experiment.

We denote the distribution p as a conditional probability,

p(x
∣

∣θ) ,

to express the fact that it can only be calculated if the value of θ is known. In applying
this notation we interpret θ as value of a random variable Θ. Associated with it is a certain
probability distribution p(θ), containing our knowledge about θ. For the moment we have to
assume that the prior p(θ) is given to us. Converting some given information about θ into a
prior distribution (point one on the above list) depends on the specific problem. We come back
to this in subsection 6.3.3.

With the distribution p(x
∣

∣θ) and the prior p(θ) known, an experiment is performed, providing
additional information about θ in the form of a sample x∗. This knowledge is used to update
the probability distribution p(θ) for θ via Bayes’ theorem,

p(θ) → p(θ
∣

∣x∗) = p(θ)
p(x∗

∣

∣θ)

p(x∗)
. (6.6)

p(x∗) =
∫

dθp(x∗∩θ) denotes the marginal. (6.6) is a ‘dynamical’ law for probabilities: It relates
the prior distribution p(θ), together with the obtained sample information p(x∗∣

∣θ), to the a
posteriori distribution p(θ

∣

∣x∗), reflecting our improved knowledge about θ.

With the posterior distribution p(θ
∣

∣x∗) now at hand, we can tackle the third problem on our
list: constructing a ‘best’ estimator for θ.
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6.3.2 Best Guess, Bayesian Estimator

What is the ‘best’ estimate for θ, given the posterior distribution p(θ
∣

∣x∗)? There can be no ‘right’
answer to this question, because the word ‘best’ involves value judgements and the problem is
therefore one of decision theory. What we need is a criterion, defining the quality of an estimate.

Every estimate θ̃ we make for θ will have an error and elementary parameter estimation the-
ory provides several error functions quantifying the error made with a guess. Without discussing
the pros and cons of different error functions, we take – in analogy to our definition of D, eq.
(5.14) – the estimate that minimizes the expected square of the error,

〈(θ − θ̃)2〉 = 〈θ2〉 − 2θ̃〈θ〉 + θ̃2

= (θ̃ − 〈θ〉)2 + (〈θ2〉 − 〈θ〉2) . (6.7)

The average, however, is taken over the a posteriori distribution p(θ
∣

∣x∗) and not over the a
priori distribution p(x∗

∣

∣θ) as is done in D. The reason to choose the a posteriori instead of the
a priori distribution lies in the fact that the latter ignores prior information about θ while the
former takes it into account and is therefore what we want.

From (6.7) we see that the choice

θ̃ = 〈θ〉 =

∫

dθ θp(θ
∣

∣x∗) (6.8)

always minimizes the expected square error and the minimum achievable value in (6.7) is the
variance of θ. (6.8) is called Bayesian estimator.

6.3.3 Implementation to N-Series, Mean Square Deviation D(gBay)

The implementation of (6.6) and (6.8) to one N -series is forthright: Bayes’ theorem reads

p(|c1|2
∣

∣N+) = p(|c1|2)
p(N+

∣

∣N, |c1|2)
p(N+)

, (6.9)

with the a priori distribution p(N+

∣

∣N, |c1|2) given by (6.1), and the marginal

p(N+) =

∫ 1

0
d|c1|2 p(N+

∣

∣N, |c1|2)

=
1

2

(

N

N+

)

[α0 + α1] .

0 ≤ |c1|2 ≤ 1 is the only a priori information we have about |c1|2. Since we do not know its
distribution within the unit interval it is reasonable to assume equipartition. Hence, the prior
writes

p(|c1|2) =

{

1
1−0 = 1 0 ≤ |c1|2 ≤ 1 ,

0 else.
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For the Bayesian estimator gBay we get

gBay =

∫ 1

0
d|c1|2 |c1|2p(|c1|2

∣

∣N+)

=

∫ 1

0
d|c1|2 2|c1|2

α0 + (α1 − α0)|c1|2
α0 + α1

=
α0 + 2α1

3(α0 + α1)
. (6.10)

Mean Square Deviation

To compare (6.10) with gr and gML we need the mean square deviation D, defined in section
5.4, eq. (5.14). There, the average in D is taken – besides states |c1|2 – over the distribution
p(N+

∣

∣N, |c1|2), whereas gBay is derived from minimizing the mean square deviation (6.7), aver-
aged over the a posteriori distribution p(|c1|2

∣

∣N+) for |c1|2. So, why should gBay be subjected to
D when it was derived from a different mean square deviation?

First of all, we need consistency if all three guesses are to be compared with each other.
Second, D and (6.7) are not really different. In writing down (6.7)

Dpost(gBay) := 〈(gBay − |c1|2)2〉

=

∫ 1

0
d|c1|2 p(|c1|2

∣

∣N+)(gBay − |c1|2)2 ,

we see that this quantity still depends on the measurement outcome N+. D(gBay) on the other
hand is independent of N+. To get rid of this dependency, Dpost(gBay) has to be averaged over
all measurement outcomes N+ with the probability distribution p(N+). But this leads – because
of Bayes’ theorem (6.9) and the trivial prior p(|c1|2) = 1 – exactly to our definition D(gBay),

N
∑

N+=0

p(N+)Dpost(gBay) =

∫ 1

0
d|c1|2

N
∑

N+=0

p(|c1|2
∣

∣N+)p(N+)(gBay − |c1|2)2

=

∫ 1

0
d|c1|2

N
∑

N+=0

p(N+

∣

∣N, |c1|2)(gBay − |c1|2)2

= D(gBay) . (6.11)

Thus, a comparison of gBay, gr and gML with D is well suited.

6.4 Comparing all Schemes

With all three guesses gr, gML and gBay established, we are in a position to compare them with
the help of the mean square deviation D. This comparison will make up the first half of this
section. The second half is devoted to a discussion of D, that is, we discard the averaging over
states. This procedure will further illuminate the behavior of our guesses if more information
about |c1|2 is available than ‘equipartition in the unit interval’.

For the remainder of this discussion we set p̄ = 1/2. D(gML) is then given in closed form,
cf. equations (6.4) and (6.5). The only motive to choose p̄ = 1/2 is convenience for further



6.4. COMPARING ALL SCHEMES 57

calculations. Nevertheless, there seem to exist interconnections to the fidelity balance and
optimal measurements, discussed in section 3.4, page 25. However, this topic shall not be
discussed here. We furthermore compare the mean square deviations for specific N , since a
closed solution for D(gBay) does not exist. The values of N are chosen as to fulfill inequality (5.3).
This ensures that all guesses are applicable to the experimental situation, where measurements
are not performed in an immediate succession.

Discussing D

gr

gML

gBay

0.2

0.6

1

0 0.2 0.4 0.6 0.8 1

D

∆p

Figure 6.1: Mean square deviation D vs. measurement strength ∆p for one N -series with N = 25
measurements. In contrast to D(gr), D(gML) and D(gBay) are confined to the interval [1/6, 1/3]
and [1/18, 1/12], respectively. It is p̄ = 1/2.

Figure 6.1 shows the mean square deviation D plotted against the measurement strength
∆p for one N -series with N = 25 measurements. Without looking at details of particular curve
shapes, one notices that

D(gBay) < D(gML) ≤ D(gr) . (6.12)

This is the main result. Explicit calculations of D for N ≤ 4 confirm relation (6.12), further sup-
ported by numerical calculations with Mathematica up to N = 80 (with N this high, condition
(5.3) is no longer fulfilled for the entire range of ∆p).

We see that D(gr) goes off to infinity for ∆p going to zero, in contrast to the other two
guesses. This behavior is evident from D(gr) ∝ ∆p−2 (cf. equation (5.15)), but can also be
inferred from the structure of gr itself. Remember, that gr = (r− p0)/∆p can take on arbitrary
large positive and negative values if ∆p is taken to be sufficiently small. We therefore expect the
mean square of all fluctuations of gr around |c1|2 to become quite large. In fact, they approach
infinity as the measurement strength goes to zero. In this limit, gr → ±∞, which means no
reasonable conclusion about |c1|2 can be made on the basis of the relative frequency r = N+/N .
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For fairly strong measurements, D(gr) clings to the horizontal asymptote Dprojective = 1/6.
This behavior gets more pronounced the higher N , that is, D(gr) drops faster to Dprojective for
smaller ∆p. In the limit of infinitely many measurements,

lim
N→∞

D(gr) = Dprojective =
1

6
, (6.13)

independent of ∆p. This expresses the fact that an infinite series of unsharp measurements is
equivalent to one projective measurement. See p. 58 of [Kon03] for a proof of this statement.

The maximum likelihood guess gML displays the same asymptotic behavior (6.13) for large
∆p and high N . In contrast to D(gr), D(gML) is bounded above by

lim
∆p→0

D(gML) =
1

3
,

verified numerically forN ≤ 30. This restriction of D(gML) over the whole range of measurements
can again be made clear by looking at gML itself. It is either 0 or 1, so fluctuations are bound
to this interval, which implies a finite mean square deviation. Although gML seems a very crude
estimate in comparison to gr, we see that D(gML) always lies below D(gr), a somehow unexpected
result.

The Bayesian estimator D(gBay) even lies below the maximum likelihood deviation, a con-
sequence of the incorporated a priori information about |c1|2. Striking feature of D(gBay) is its
small absolute value, lying in between 1/18 for projective measurements and 1/12 for ∆p = 0
(analytically as well as numerically verified for N ≤ 30). In analogy to the finite deviation
of gML, these small deviations can be attributed to the special behavior of gBay. A moment’s
thought shows that gBay is restricted to the interval

1

3
≤ gBay ≤ 2

3
. (6.14)

This accounts for its low mean square deviation. In fact, gBay is the best possible estimate one
can make, taking D as the criterion. Recall, that we got gBay by minimizing the mean square
error, averaged over the a posteriori distribution p(|c1|2

∣

∣N+) for |c1|2. Now, because of (6.11),
the minimum of Dpost(gBay) is also the minimum for our criterion D: Assume we want to find
the guess g minimizing D, defined in (5.14). D(g) then reads

D(g) =

N
∑

N+=0

∫ 1

0
d|c1|2p(N+

∣

∣N, |c1|2)(g − |c1|2)2

=

N
∑

N+=0

(

N

N+

)[

1

2
(α0 + α1)g

2 +
1

3
(α0 + 2α1)g +

1

3
α0 +

1

4
(α1 − α0)

]

.

Solving for ∂D(g)/∂g = 0 yields g = gBay. Hence, there exists no estimate having a lower mean
square deviation D than gBay.

Remark: The POVMs corresponding to gBay = 1/3 respectively gBay = 2/3 describe phase
damping, cf. [Nie01], page 384. For example, if gBay = 2/3, then p0 = 0 and E+ = p1|1〉〈1|,
E− = |0〉〈0| + (1 − p1)|1〉〈1|.
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Is D an Appropriate Measure?

Although gBay has the lowest possible deviation, it is an unbiased estimator, as can be seen
from relation (6.14) (take, for example, |c1|2 = 0.8). This poses the question whether D is
an appropriate measure to define the quality of a guess, if used in the context of real-time
visualization of dynamics. In this respect the mean square deviation competes with criteria
normally used in parameter estimation theory (cf. Appendix C.2). gr is – by construction – an
unbiased guess, which ensures the correct estimate (true value of |c1|2) in the limit of infinitely
many ensembles (of finite size). Nevertheless, D(gr) lies above D(gML) and D(gBay). gML does
not seem to be unbiased, although this could not be verified analytically.

So far, a conclusive answer to what criterion is best used cannot be given. The classical
measures unbiasedness and efficiency are not applicable to the mean square deviation, since no
measured average for |c1|2 exists. Consistency seems a reasonable criterion for a guess: The
error made with a guess should go to zero if the ensemble size goes to infinity. Then, an infinite
amount of information would be available and the guess would be exact.

D defined in (5.14) was developed in close analogy to the classical measure variance. It thus
represents a first step towards a measure suited to analyze the error made with a guess obtained
from an N -series. See [Kle03] for a thorough discussion.

Discussing D
Should we find ourselves in the situation where more information about |c1|2 is available to us
than ‘equipartition within the unit interval’, the average over states is unnecessary. Then D is
a sufficient measure to make statements about different guesses and their dependence on |c1|2.

Figure 6.2 shows the mean square deviation D versus measurement strength ∆p for N = 4
measurements and different states |c1|2. The four plots display D(g) for the eigenstates |0〉 and
|1〉 (|c1|2 = 0 and |c1|2 = 1, respectively) as well as two superpositions |ψ〉 = c0|0〉 + c1|1〉
(|c1|2 = 0.3 and |c1|2 = 0.7). Except for the lower left plot, axes labels have been suppressed for
better readability.

In contrast to figure 6.1, statements about the quality of a particular guess now depend on
the measurement strength as well as the state one is presupposing. For |c1|2 sufficiently away
from the corresponding eigenstates, we qualitatively recover the main result (6.12), now stated
with D instead of D:

D(gBay) < D(gML) ≤ D(gr) .

This is not surprising. Because gBay lies within the interval [1/3, 2/3], the estimate never lies
far away from the actual value of |c1|2. On the other hand, the maximum likelihood estimate is
either 0 or 1, so on average, gML lies further away from |c1|2 than gBay. Again, gr has the highest
deviation D, regardless of the applied measurement strength.

The situation changes if |c1|2 lies close to either one of the respective eigenstates |0〉 or |1〉.
For strong measurements, gML and gr outrun the Bayesian estimate, because of its confinement
to the interval [1/3, 2/3]. The maximum likelihood estimate is now almost perfectly well suited
to follow the evolution of |c1|2, as well as gr, whose deviation D(gr) drops to zero for projective
measurements, and |c1|2 = 0 or |c1|2 = 1.
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Figure 6.2: Mean square deviation D vs. measurement strength ∆p for one N -series with N = 4
measurements and different values of |c1|2. In all plots gr is displayed as straight line, gML as
dotted line, gBay as dashed line. Labeling of axes has been suppressed except for the lower left plot
to enhance legibility. For |c1|2 near an eigenstate and strong measurements, D(gr) and D(gML)
surpass the Bayesian estimate, whose D(gBay) is better otherwise. It is p̄ = 1/2.



Chapter 7

Summary and Outlook

7.1 Summary

Several aspects of state and parameter estimation in quantum theory have been studied in this
work using the language of generalized measurements (POVM measurements).

In the first part, comprising chapters 3 and 4, the delicate balance between information
gained from a measurement and thereby induced state disturbance was investigated. For one
measurement (mapping pure states to pure states) on a single system, the resulting trade-
off [Ban01a] in terms of mean operation fidelities F and G was investigated for qubits and a
special class of qubit POVMs. This special class consists of measurements with commuting
effects. Such unsharp measurements can be interpreted in terms of ordinary observables, as, for
example, energy or spin. The optimal balance between information gain and disturbance was
determined to be a simple constraint, restricting the parameters characterizing these unsharp
measurements.

A clear visualization of the trade-off is provided by the FG-plane. Here, the trade-off could
be expressed in terms of parameters characterizing the unsharp qubit POVM. This parametriza-
tion revealed a simple structure, separating minimal from non-minimal measurements (Kraus
operators of non-minimal measurements have a non-trivial unitary back-action term in their po-
lar decomposition). Non-minimal measurements were found to deteriorate the optimal balance
noticeably.

If nothing is known a priori about the pure qubit state to be estimated, a unitary back-action
term, i.e. non-minimal measurements, can not improve on the mean operation fidelity F . If, how-
ever, a priori information about the qubit is available, then – as was shown in chapter 4 – a
suitably chosen back-action improves on the mean operation fidelity, calculated for minimal
measurements and a priori information. The latter fidelity, in turn, can be larger or smaller
than the mean operation fidelity calculated if no a priori information about the qubit exists;
that is, information not necessarily implies a higher fidelity. Interestingly, the mean operation
fidelity calculated for a priori information and non-minimal measurements, containing this spe-
cial back-action, can be higher than the mean operation fidelity calculated if there is no a priori
information.

In the second part, comprising chapters 5 and 6, focus is shifted to the estimation of pa-
rameters characterizing dynamics of a qubit. Building upon previous work on the real-time
visualization of a qubit’s Rabi oscillations which employs sequences of unsharp measurements
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(N -series), different estimation procedures were devised and compared. The originally proposed
estimator [Aud01] was constructed to fulfill unbiasedness, a criterion used in classical estimation
theory. The second estimator (guess) developed uses the maximum likelihood method. It dis-
cards, however, eventually available pre-measurement information about the qubit. The third
guess (Bayesian estimator) takes this fact into account by means of Bayes’ theorem.

To compare all guesses, a mean square deviation was constructed to define a measure of
quality. With this measure at hand, it was shown that for one N -series, the Bayesian estimator
is superior to the maximum likelihood – as well as the original estimator. The latter, in turn, is
inferior (i.e. has a larger mean square deviation) to the maximum likelihood estimator.

7.2 Outlook

The increase in fidelity by certain unitary back-actions and pre-measurement information about
the qubit state is an interesting and unexpected effect, requiring further investigation. In this
connection, the distinguishability of two non-orthogonal pure states, quantifiable e.g. by the
error probability, poses an interesting problem. It would be worthwhile to check whether a
reduction of the error probability is possible by means of the special non-minimal measurements
introduced in chapter 4.

Without information about the pre-measurement state, the fidelity trade-off between F and
G is optimized for the special class of minimal measurements with commuting effects. The
question arises if these unsharp measurements are the only class saturating the optimal upper
bound.

In chapter 6 the mean square deviation was used to compare all three estimators obtained
from the measurement results of one N -series. By definition, the measurements constituting
one N -series were carried out in an immediate succession. That is, no dynamical evolution of
the state in between two measurements could take place. If dynamical processes are taken into
account, the question poses itself whether the mean square deviation is an appropriate measure
any longer. Numerical simulations of the estimators derived in this work are currently made to
elucidate things.



Appendix A

Calculations in Chapters 3 and 4

A.1 Inequalities Used for Trade-Off

In deriving the fidelity balance (3.15) between F and G we made use of two vector inequalities
from linear algebra. I placed the omitted details in this appendix in order not to interrupt the
flux of the presentation.

Cauchy-Schwarz Inequality

The Cauchy-Schwarz inequality states that for two arbitrary vectors x,y ∈ � N the inequality

x · y ≤ |x| · |y| (A.1)

always holds, with equality being reached if and only if x = ay (a > 0). | · | denotes the usual
2-norm. The proof of (A.1) can be found in every introductory textbook on linear algebra. Here,
I only prove the equality sign: if x = ay with a > 0, we get

l.h.s = x · y = ay · y = ay2

r.h.s = |x| · |y| = a|y| · |y| = ay2 .

Inequality Between Quadratic and Arithmetic Mean

For a sequence of real numbers ai ∈ � and N ∈ � , the arithmetic mean mA and the quadratic
mean mQ are defined through

mA :=
1

N

N
∑

i=1

ai and mQ :=

(

1

N

N
∑

i=1

a2
i

)1/2

,

with the inequality mA ≤ mQ ∀ai ∈ � holding between them. Equality is reached if and only if
a1 = · · · = aN . To see this, we evaluate both sides of the inequality assuming ai = a ∀i:

l.h.s =
1

N

N
∑

i=1

a =
1

N
Na = a

r.h.s =

(

1

N

N
∑

i=1

a2

)1/2

=

(

1

N
Na2

)1/2

= a .
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A.2 Calculation of FΩ(Us

√
Es)

A calculation becomes more error-prone the longer it gets. I therefore give the explicit derivation
of FΩ(Us

√
Es) in section 4.3 (p. 32), so that the reader should be able to reconstruct every step

of it.

Suppose we transformed our knowledge about the pre-measurement state |ψ〉 into a region Ω
on the surface of the Bloch sphere. After choosing |ψ̃〉, we rotate Ω via the unitary transformation
Uz = exp {iξσz}, such that |ψ̃〉 lies in the yz-plane. Requiring the action of

√
Es on |ψ̃〉 to be

fully compensated by Us = exp {±iαs/2σx} determines the two angles αs by which every state
within Ω will be rotated. αs are given by (4.3), the scalar product between the normed Bloch
vectors of |ψ〉 and |ψ̃〉.

We start with the definition (4.1):

FΩ(Us
√

Es) =
1

N(Ω)

∫

Ω
dψ
∑

s=±
|〈ψ|Us

√

Es|ψ〉|2 .

Evaluation of the integral is not necessary for a qualitative analysis, so it suffices to calculate
the integrand,

∑

s=±
|〈ψ|Us

√

Es|ψ〉|2 = |〈ψ| exp {−iα+

2
σx}
√

E+|ψ〉|2 + |〈ψ| exp {iα−
2
σx}
√

E−|ψ〉|2 .

Both terms are calculated in the same fashion, so we focus on the term with α+. Using

exp {±iαs
2
σx} = cos

αs
2

� ± i sin
αs
2
σx ,

we get

|〈ψ| exp {−iα+

2
σx}
√

E+|ψ〉|2 = |〈ψ|
(

cos
α+

2

� − i sin
α+

2
σx
)
√

E+|ψ〉|2

= | cos α+

2
〈ψ|
√

E+|ψ〉 − i sin
α+

2
〈ψ|σx

√

E+|ψ〉|2

= cos2 α+

2
|〈ψ|

√

E+|ψ〉|2 + sin2 α+

2
|〈ψ|σx

√

E+|ψ〉|2

+
i

2
sinα+〈ψ|

√

E+|ψ〉
(

〈ψ|σx
√

E+|ψ〉∗ − 〈ψ|σx
√

E+|ψ〉
)

.

(A.2)

In the last step we used positivity1 of
√
E+ and 2 sin (α+/2) cos (α+/2) = sinα+. The Pauli

matrix σx = |0〉〈1| + |1〉〈0| is hermitian, 〈ψ|σx
√
E+|ψ〉∗ = 〈ψ|(σx

√
E+)†|ψ〉 = 〈ψ|σx

√
E+|ψ〉,

and (A.2) writes

|〈ψ| exp {−iα+

2
σx}
√

E+|ψ〉|2 = cos2 α+

2
|〈ψ|

√

E+|ψ〉|2 + sin2 α+

2
|〈ψ|σx

√

E+|ψ〉|2

+
i

2
sinα+〈ψ|

√

E+|ψ〉〈ψ|[
√

E+, σx]|ψ〉 .

1The modulus in |〈ψ|√E+|ψ〉|2 can be omitted. We will leave it for optical homogeneity, though.
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With the commutator [
√
E+, σx] = i(

√
p0 −

√
p1)σy, we finally arrive at

|〈ψ| exp {−iα+

2
σx}
√

E+|ψ〉|2 = cos2
α+

2
|〈ψ|

√

E+|ψ〉|2 + sin2 α+

2
|〈ψ|σx

√

E+|ψ〉|2

+
1

2
(
√
p1 −

√
p0)〈ψ|

√

E+|ψ〉〈ψ|σy |ψ〉 sinα+ . (A.3)

Similarly, the second term with α− is evaluated along the same line. One gets

|〈ψ| exp {iα−
2
σx}
√

E−|ψ〉|2 = cos2
α−
2

|〈ψ|
√

E−|ψ〉|2 + sin2 α−
2

|〈ψ|σx
√

E−|ψ〉|2

+
1

2
(
√

1 − p0 −
√

1 − p1)〈ψ|
√

E−|ψ〉〈ψ|σy |ψ〉 sinα− . (A.4)

With (A.3) and (A.4), FΩ(Us
√
Es) reads

FΩ(Us
√

Es) =
1

N(Ω)

∫

Ω
dψ

{

∑

s=±
|〈ψ|

√

Es|ψ〉|2 cos2 αs
2

+ |〈ψ|σx
√

Es|ψ〉|2 sin2 αs
2

+
1

2
〈ψ|σy|ψ〉

[

(
√
p1 −

√
p0)〈ψ|

√

E+|ψ〉 sinα+ + (
√

1 − p0 −
√

1 − p1)〈ψ|
√

E−|ψ〉 sinα−
]

}

.

To connect FΩ(
√
Es) to FΩ(Us

√
Es), the final substitution cos2 (αs/2) = 1− sin2 (αs/2) is made

which leads to the result (4.4) with minimal term (4.6) and difference term (4.9).
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Appendix B

Bloch Sphere Representation

The bit is the fundamental concept in classical computation and classical communication. Quan-
tum computation and quantum communication are built upon an analogous concept, the quan-
tum bit, or qubit for short. In addition to their classical counterparts, qubits can be in superpo-
sitions of states |0〉 and |1〉

|ψ〉 = α|0〉 + β|1〉 , (B.1)

making them much more powerful when it comes to certain computational tasks. Because of
normalization |α|2 + |β|2 = 1, eq. (B.1) may be rewritten (a global phase factor eiγ is omitted
since it has no observable effects)

|ψ〉 = cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉 , (B.2)

where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π are azimuthal and polar angles, respectively. θ and ϕ uniquely
define a point on the surface of the three-dimensional unit sphere, also called Bloch sphere (cf.
figure B.1). It provides a useful means of visualizing the pure state of a single qubit, and often
serves as an excellent testbed for ideas about quantum computation and quantum information.
Many operations on single qubits are neatly described within the Bloch sphere picture. However,
it must be kept in mind that this intuition is limited because there is no generalization of the
Bloch sphere known for multiple qubits.

The general description of states in the Bloch sphere picture makes use of an operator basis
spanned by the three Pauli matrices σi, i = {x, y, z} and the unit matrix

�
. Every operator A

in two-dimensional Hilbert space H2 can be decomposed according to

A =
1

2
tr[A]

�
+

1

2

∑

i

tr[Aσi]σi .

This way, we can write any qubit density matrix ρ in the form

ρ =
1

2
(

�
+ n · σ) ,

with σ := (σx, σy, σz); n =
∑

i tr[ρσi] is the so-called Bloch vector. It uniquely defines a point
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Figure B.1: Bloch sphere representation of a qubit. Pure states lie on the surface, mixed states
within the sphere.

within the Bloch sphere as can be seen by calculating tr[ρ2]:

tr[ρ2] =
1

4
tr[(

�
+ n · σ)(

�
+ n · σ)]

=
1

4
tr[

�
+ 2n · σ +

∑

i,j

ninjσiσj ]

=
1

2
(1 + n2) ;

here, we used σiσj = δij
�
+
∑

k εijkσk in the last step. For pure states, tr[ρ2] = 1, so |n| = n ≤ 1.
Since ρ = 1

2

�
denotes the total mixture, n is bounded between zero1 and one, 0 ≤ n ≤ 1.

Consequently, mixed states lie within the Bloch sphere whereas pure states populate its surface.
This can also be seen by noting that in the latter case n =

∑

i tr[ρσi] = 〈ψ|σ|ψ〉. Inserting (B.2)
we get

n = (sin θ cosϕ, sin θ sinϕ, cos θ) ,

which is just the unit vector in spherical coordinates. Consequently, every pure state is com-
pletely characterized by azimuth θ and polar angle ϕ; additionally, mixed states require the
length n.

1because the σi are linearly independent, every component of the Bloch vector has to vanish.



Appendix C

Notes on Probability Theory

Basics of probability theory can be found in every introductory textbook on the subject, e.g.
[Lar83] and [Kre70]. Therefore this appendix should not be viewed as a thorough introduction
but rather as a convenience to the reader. We assume a certain familiarity with elementary set
theory, since it provides a clear and exact language for stating and solving probability problems.

Part one reviews some basic definitions and results given in [Nie01], whereas part two provides
definitions of quality measures for estimators.

C.1 Basics

The basic notion of probability theory is that of a random variable. A random variable X may
take one of a number of values, x, with probability pX(x). We use upper case to denote the
random variable, and x to denote the values that random variable may take. All possible values
are elements of some sample space Ω which can be continuous or discrete. In this thesis we are
only concerned with discrete sample spaces, i.e. any random variable can take values from a
finite (or countably infinite) set of values.

A probability function pX of some random variable X assigns a real number to any element
or subset of the sample space of X. From intuition it is clear what properties such a probability
function must have: probabilities always have to be positive and add up to one, since one event
always happens in any experiment. The third property a probability measure should satisfy is
that of additivity: if two events are independent (i.e. every outcome of an experiment depends
in no way on any other outcome), their respective probabilities of occurrence should add up.
A strict formulation of these intuitive rules in abstract probability theory was first given by
Kolmogorov [Kol33]:

Definition C.1 (probability axioms). A probability function pX of a random variable X is
a real-valued set function defined on the class of all subsets Σ of the sample space Ω and has to
fulfill the following three rules:

(i) pX(Ω) = 1

(ii) pX(Σ) ≥ 0 for all Σ ⊂ Ω

(iii) pX(Σ1 ∪ Σ2 ∪ · · · ) = pX(Σ1) + pX(Σ2) + · · · if Σi ∩ Σj = ∅ ∀ i 6= j.
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In experiments, one often has to consider two random variables X and Y (if no ambiguities
arise, the subscripts on p are dropped in the following). The conditional probability that Y = y
given that X = x is defined by

p(y
∣

∣x) :=
p(x ∩ y)
p(x)

, (C.1)

where p(x ∩ y) is the probability that X = x and Y = y. When p(x) = 0 the convention
p(y
∣

∣x) = 0 is made. For independent random variables X and Y , p(x ∩ y) = p(x)p(y) for all x
and y; additionally, one has p(y

∣

∣x) = p(y) for all x and y.
Bayes’ theorem relates the conditional probabilities for Y given X to those for X given Y ,

p(x
∣

∣y) = p(y
∣

∣x)
p(x)

p(y)
; (C.2)

it is a direct consequence of (C.1), since p(x ∩ y) = p(y ∩ x). The probability p(y) appearing in
(C.2) is often re-expressed using the law of total probability. It states that if X and Y are two
random variables, then the probabilities for Y can be expressed in terms of the probabilities for
X, and the conditional probabilities for Y given X,

p(y) =
∑

x

p(y
∣

∣x)p(x) ,

where the sum is over all values x of the respective sample space. The expectation, average or
mean of a random variable X is defined by

〈X〉 :=
∑

x

p(x)x .

〈·〉 is a linear function; for independent X and Y , 〈XY 〉 = 〈X〉〈Y 〉. The variance of a random
variable X is defined by the expression

σ2(X) := 〈(X − 〈X〉)2〉 = 〈X2〉 − 〈X〉2 .

Its square root σ(X) :=
√

σ2(X), called standard deviation, is a measure of the spread of a
random variable about the average.

C.2 Properties of Estimators

One problem of statistical inference is that of estimating one or more unknown parameters u of
some probability distribution pX(u) for the random variable X. Here we shall not be concerned
with methods of how to find a guess (called ‘estimator’) ũ(x1, . . . , xN ) given a sample of size N .
Instead we will review three criteria judging the quality of a given estimator ũ.

Definition C.2 (unbiasedness). An estimator ũ of an unknown parameter u is unbiased if
〈ũ〉 = u.

Thus, an unbiased estimator is a random variable whose expected value is the parameter
being estimated; if we were to take samples of size N repeatedly and for each compute the
observed value of ũ (the estimate for that sample outcome), then the average of these observed
values would be u, the parameter being estimated.



C.2. PROPERTIES OF ESTIMATORS 71

The property of unbiasedness ensures that the estimator ũ yields the true value of the
parameter u in the limit of infinite ensembles. However, this statement does not imply that
the estimator has very high probability of lying close to the unknown parameter for any given
ensemble. Suppose we have two unbiased estimators ũ1, ũ2 for the same sample. Clearly, we
would take the estimator who has the higher probability of lying close to the parameter. This
leads us to consider the variances of unbiased estimators:

Definition C.3 (efficiency). If ũ1 and ũ2 are both unbiased estimators of u for the same
sample, then ũ1 is more efficient than ũ2 if

σ2(ũ1) < σ2(ũ2) .

There is one further property which estimators may possess, that of consistency:

Definition C.4 (consistency). ũ is a consistent estimator of u if

lim
N→∞

[p(ũ− u) < ε] = 1 for any ε > 0

(N is the sample size).

Note first of all that an estimator ũ is consistent if a sequence of probabilities (evaluated
from the probability distribution of ũ) converges to one as the sample size increases. Thus
consistency, strictly speaking, has to do only with the limiting behavior of an estimator as the
sample size increases without limit and does not imply that the observed value of ũ is necessarily
close to u for any specific sample size N (cf. efficiency). This is not the same as unbiasedness,
where only different ensembles of fixed size N are considered.

There is a theorem (cf. page 233 of [Lar83]) which gives a relatively easy check on whether a
particular estimator is consistent. It says that if ũ is a random variable whose value gets closer
and closer to u as N increases, and whose variance shrinks to zero as N increases, it will be a
consistent estimator of u.
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