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An Efficient Method for Sampling the Essential
Subspace of Proteins

Abstract

A method is presented for a more efficient sampling of the configurational space of proteins
as compared to conventional sampling techniques such as molecular dynamics. The method
is based on the large conformational changes in proteins revealed by the "essential dynam-
ics" analysis. A form of constrained dynamics is performed, forcing the system to move
along some of the essential coordinates. This results in a broader sampling of the essential
subspace than in a comparable conventional molecular dynamics simulation without con-
straints. The new sampling method (essential dynamics sampling) was applied to the histi-
dine-containing phosphocarrier protein HPr. The results indicate that the essential dynamics
sampling method produces physically allowed structures, as estimated by the evaluation of
many geometrical properties. In addition, a study of the motions in the essential subspace
reveals a diffusion-like behavior.

Introduction

Folded proteins are stable mechanical constructs able to perform a wide range of
functions. These functions are defined by the structure and the dynamical behavior
of a folded protein. The 'folded state' itself is a collection of interconvertable struc-
tures. Unfortunately it is experimentally not possible to investigate the properties
of such an ensemble of structures extensively and show the link between these
(dynamical) properties and biological function. Hence, many questions about this
link remain unanswered.

Recently we showed [1-4] that the configurational space of a folded protein can be
divided in a many-dimensional near-constraints space where simple small fluctua-
tions occur and a low-dimensional 'essential' subspace in which the large concert-
ed motions are confined (this important result was lately also confirmed by others
[S]). Previous work has suggested that these 'essential motions' are connected to
biological function. [1-4] However, the conformational changes which were
revealed by the essential dynamics analysis are limited by the sampling of these
motions in the molecular dynamics (MD) trajectories. An exhaustive sampling and
investigation of the essential subspace could reveal the extent and characteristics of
structural transitions in proteins.

In this paper, a general method to produce an efficient sampling of a protein essen-
tial subspace is described. As an example, the investigation into the behavior of the
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essential coordinates of a protein (histidine containing phosphocarrier protein
(HPr)) is presented.

Theory

In the essential dynamics method a covariance matrix based on the fluctuations in
atomic (Cartesian) positions is used [1, 6]. No special shape of the potential ener-
gy (e.g. harmonic as in the normal modes approach [7]) is required and any set or
subset of coordinates can be used. The method is based on the extraction of eigen-
vectors from the covariance matrix which are then ordered by decreasing corre-
sponding eigenvalue. If approximated linear constraints or even statistically inde-
pendent directions are present in the configurational space, they will be defined by
eigenvectors of the covariance matrix [1, 6]. The eigenvectors of such a matrix cor-
respond also to the 'best fitted' directions through points in configurational space
produced by an MD trajectory. The procedure then can be considered as a linear
multidimensional fitting (introduced previously in protein MD, [8]), the first eigen-
vector having the maximum possible average square displacement (eigenvalue). If
the overall motion of the protein is mostly confined in a linear n dimensional sub-
space of the configurational space, this subspace will be defined by the first n
eigenvectors of the covariance matrix. We found for several proteins that the essen-
tial subspace is confined within approximately the first 10 eigenvectors and all the
other eigenvectors are "near-constraints” coordinates [1-4]. A structure can be
described as a function of the essential coordinates £ and of the near-constraints
coordinates s:

z(§;8) = 2"(§) + Ax(s)

with Ax always small and hence x0 determining the relevant structural properties.
From the behavior of the near-constraints coordinates (independent Gaussian fluc-
tuations) it is also possible to express the free energy as a potential energy of mean
force in the essential coordinates and near constraints ones:

A€ 8) ~ A(8) + %Zkisi2 2
the approximation becoming only roughly valid when we use all-atom eigenvectors.

Equations 1 and 2 show that we must be able to sample the essential subspace to
obtain and investigate the biologically active states of a protein. Such a sampling is
inefficient using conventional MD simulations, because of the time required for a
large sampling. The time currently maximally obtainable for a reasonably large
protein by MD, in the ns range, does not suffice for large sampling. However, the
knowledge of the essential eigenvectors can be used to produce a more efficient
sampling in the essential subspace.

Two types of essential dynamics sampling are possible:

1. "Geometrical" sampling. In this mode of sampling we are mostly interested in col-
lecting geometrical properties of the structures as a function of the position in the
essential subspace, and use these geometrical properties to define the limits of this
subspace. A grid in the essential subspace is defined and at every grid point we con-
struct the structure x0 . We equilibrate Ax by energy minimization and/or a short MD
simulation keeping the position in the essential subspace fixed. Using this method it
is possible to construct a large number of structures defined as linear combinations
of the essential eigenvectors, with only a local small adjustment for all the other
coordinates. Such a collection of structures can be analyzed geometrically and sta-
tistically to define 'stable’ and 'unstable’ regions in the essential subspace.

2. "Physical" sampling. Here the system is moving in the essential subspace in a



dynamical (MD related) way. In every region of this subspace an ensemble of phys-
ical structures can be generated, which can be used to investigate the physical prop-
erties of the conformational states. In order to efficiently sample the configurational
space, constraint forces are used to move the system in the essential subspace while
all the other coordinates move freely according to the normal equations of motion.
The constraint force is defined using non-stationary holonomic constraints such as
a constant step motion along a direction in the essential subspace or a constant step
expansion or contraction of the length of the radius between a fixed (reference)
position and the actual position, both defined in the essential subspace (we use in
general a subset of essential coordinates).

We shall investigate the physical sampling procedure in details here. The displace-
ment in the essential subspace during one time step At of MD can be expressed as:

AE = A€, + AL, 3

Ag, is the displacement produced by the dynamics (without constraint) and A, is
the correction for the application of the constraint. The constraint in the essential
subspace can be defined as:

G(£(t)t) =0 4

Eq. 4 does not suffice to solve for A&,; ¢ in a unique way. To obtain a unique solu-
tion, we add the requirement that the total perturbation | Ag, | is minimized. This
is achieved using one Lagrangian multiplier.

o3 ALY - AG(E0) + 0, + At +80] =0 s

or
Ag; - ’\aaTig =0 6

or
AL= AaaAGg 7

Using equation 7 and equation 4 we can expreéss A as a function of £(t); A€, and
t. Such a value of A can be used to correct A to fulfill our constraint motion with
the least perturbation. In appendix A one example is given.

Method

We have produced an extensive essential dynamics (ED) sampling of the 85 residue
histidine-containing phosphocarrier protein HPr from E. Coli. Sampling eigenvec-
tors were obtained from MD simulations in water, described elsewhere [9]. Three
simulations, initiated from three structures taken from the NMR cluster [9] were
concatenated for an essential dynamics analysis. This concatenation of related tra-
jectories has proven to be a suitable method for obtaining eigenvectors represent-
ing identical concerted motions in the trajectories [2-4]. Since all three simulations
started from structures derived from NMR data, the cluster of structures obtained
from the three MD simulations together will form an ensemble of physically
allowed configurations (assuming the validity of our force-fields). Taking this
ensemble of structures together for an essential dynamics analysis will yield over-
all directions which describe both motions within the single trajectories, as well as
differences between the simulations (which originate in the fact that they were
started from different structures).

Only C-a atoms were used to construct a covariance matrix from which the eigen-
vectors were extracted. Initial experiments showed that the use of all-atom eigen-
vectors resulted in errors in the sampling caused by apparent correlation’s between
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Figure la: Projections of the trajectories produced
by the conventional MD runs and the ED sampling
method onto planes by combinations of the three
eigenvectors along which the position was con-
strained. A. Projections onto the 1-3 plane. B.
Projections onto the 1-4 plane. C. Projections onto
the 3-4 plane.
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large backbone motions and slow side chain rearrangements, because of insufficient sta-

tistics. We chose to use eigenvectors 1, 3 and 4 for the ED sampling because these show
large concerted motions of residues throughout the protein. The second eigenvector
only shows a wobbling of the C-terminus whereas the rest of the protein remains fixed.

The protocol used for the ED sampling consisted of cycles of three parts. The first
step is a "radius expansion" (see appendix A) of 5000 steps using the first, third and
fourth eigenvector, increasing the radius spanned by these coordinates by 0.0004
nm per step. Initial experiments showed that increasing the stepsize for the con-
strained coordinates leads to undesired effects (highly strained structures). The
expansion is initiated with the final configuration of the previous free MD run (see
step 3, below) taken as the center of the expansion sphere. During this expansion,
the projections on the selected eigenvectors produced in a normal MD step are cor-
rected in the radial direction of the expansion sphere in such a way that they fulfill
the expansion constraint. The second step in the cycle consists of 5000 steps of
MD, fixing the positions along the essential coordinates which we used in the
expansion. This is meant to equilibrate the system at the new position in the essen-

tial space. The third step is a free run of 20000 steps (40 ps) performed to sample
the local configurational space.

We started from an equilibrated structure taken as a snapshot from one of the three
free MD simulations from which the eigenvectors were extracted. First, a number
of expansion steps were performed (no free/fixed MD). Cycle 1 was started from
the resulting structure. Cycles 2-5 were started from the final structure of the pre-
ceding cycle. A sixth cycle was started directly from the equilibrated conventional
MD run. The software used was based on the simulation package GROMOS [10],
with modifications to allow constraints on essential eigenvectors. DSSP [11] was
used for evaluation of hydrogen bonds, secondary structure and solvent accessibli-
ties. PROCHECK [12] was used to evaluate the number of unfavorable phi/psi

combinations. All visualizations and structure evaluations were performed with the
modeling package WHAT IF [13].

The system studied consisted of 785 HPr atoms surrounded by 2317 water molecules
[14] adding up to a total of 7736 atoms. Periodic boundary conditions were applied
using a truncated octahedron box. The temperature was kept constant by coupling to
an external bath [15] with a coupling constant of 0.01 ps. SHAKE [16] was used to
constrain bond lengths to their equilibrium position, allowing a time step of 2 fs. 4s.
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Figure 1b: Comparison of the eigenvalues obtained
by the ED sampling method with the eigenvalues
obtained by the three initial MD runs.
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Figure 2: Geometrical properties as a function of time.
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Results and Discussion

To investigate the efficiency of the ED sampling protocol, we compared the initial
three MD simulations with the trajectory obtained by the ED sampling. Fig. 1a shows
the projections (calculated from the three initial MD runs and the ED sampling run) in
the three planes spanned by eigenvectors 1, 3 and 4. The space sampled by the expan-
sion/free runs, in these planes, is larger in almost every direction than the space which
was sampled during the three conventional MD simulations. In Fig. 1b the eigenval-
ues obtained by the three MD runs are compared to the-eigenvalues obtained by the
ED sampling. It is clear that the first 10 eigenvalues of the ED sampling are consider-
ably larger then the first 10 eigenvalues of the three MD runs, implying that the vol-
ume covered by the ED sampling in the essential subspace is significantly broader. For
example the ratio between the square root of the first 5 eigenvalues (root mean square
* . fluctuations) of the ED sampling run and the square root of the first 5 eigenvalues of
" the 3 MD runs is about 14. The results presented here were produced by six cycles as
described previously, with each cycle containing 31000 integration steps, which would
correspond to 62 ps of usual MD. The six cycles together would therefore cost the
same amount of CPU time as an MD simulation without constraints of 372 ps. The
three conventional MD runs were 200 ps each, adding up to a total of 600 ps. Hence,
with the ED sampling method a larger volume is sampled at less computational cost.

During each cycle, several geometrical properties were monitored (Fig. 2), like the
total solvent accessibility (A), the conservation of secondary structure elements
(B), the number of hydrogen bonds (C) and the number of strained phi/psi combi-
nations (D). These geometrical properties proved to give more valuable informa-
tion than the RMS deviation from a reference structure, which is widely used in
MD as a stability measurement. The motions involved are so large that the RMS
deviation, see Fig. 3, indicates large structural rearrangements (usually considered
to be an indication for an instability of the simulation), while the geometrical prop-
erties are not significantly different in the ED sampling cycles compared to the
three MD runs. This shows that the ED sampling method produces physically
allowed structures. Energies during these calculations showed a similar trend (the
energies of the conformations produced by this form of constrained dynamics are
fluctuating in the same range as in conventional MD). From the data obtained it
seems that almost every direction of the essential subspace is allowed within a cer-
tain boundary. These boundaries in the essential subspace could define then a large
set of physically allowed structures of a protein. A superposition of structures at the
borders of the essential subspace is shown in Fig. 4. Although there are significant
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Figure 2 (continued): D. The number of phi/psi tor-
sion angles in unfavourable regions.
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Figure 3: Root mean square deviation (RMS) of
the alpha carbon atoms from a reference structure,
during the ED sampling cycles.

Figure 4: Superposition of the structures having the
minimum and maximum accessibility (solid) and
number of residues in random coil conformation
(dotted) during the ED sampling procedure.
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differences in conformation between structures in various regions of the essential
subspace, the protein retains its overall fold.

It should be noted that the density obtained by the ED sampling procedure cannot
be used directly for exact thermodynamical evaluations on the system, since its
behavior is affected by the presence of the constraints. The ED sampling procedure
can be regarded as an efficient way to collect a large ensemble of possible struc-
tures that a folded protein can reach. This collection of structures can then be used
to evaluate the structural and physical properties in different regions of the essen-
tial subspace. In Fig. 5 we also compared the eigenvectors of the initial three MD
runs with the eigenvectors obtained by the ED sampling. In the figure are shown
the comulative square projections (square inner products) of single eigenvectors of
the three MD runs, on the eigenvectors set obtained from the ED sampling. The first
10 eigenvectors (in the figure are shown the first 5 and the tenth) of the three MD
runs (defining approximately the essential coordinates of these trajectories) can be
almost completely reproduced (at least about 80%) within the first 50 (50 out of
255) eigenvectors evaluated from the ED sampling. In particular eigenvectors 3 and
4 of the three MD runs are almost completely defined by the first 6 or 7 eigenvec-
tors of the ED sampling, and the other essential eigenvectors of the MD runs can
be reproduced for 50% or 60% within the first 20 (20 out of 255) eigenvectors
obtained from the ED sampling. The partial mixing of the essential subspace
obtained from the three initial MD runs, and the first 20 or 30 near constraint eigen-
vectors of the ED sampling is due to insufficient statistics of both trajectories (MD
runs and ED sampling run) to achieve full convergence of the essential subspace in
such high dimensional configurational space. From the figure it is also clear that
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typical near constraint eigenvectors, like eigenvectors 50, 100 and 200, calculated
from the MD runs do not have any mixing with the essential subspace of the ED
sampling (approximately the first 10 eigenvectors). This significant correspon-
dence between the essential subspace obtained by the ED sampling and the essen-
tial eigenvectors obtained from the initial three MD runs, suggests that an initial
MD simulation of a few hundreds picoseconds could be enough to obtain a rea-
sonable basic approximation of the fully converged essential subspace of a protein,
in order to start the ED sampling procedure.

Finally as a first investigation of the physical properties of the essential subspace we
studied the average behavior of motions along the essential coordinates. The average
square distance of the projections onto eigenvectors 1, 3 and 4 (with respect to their
starting positions) is shown as a function of time in Fig. 6. Thirty stretches of 20 ps
were taken from the three free MD simulations to produce these data. The linear
dependence of the average square distance on time indicates diffusion-like behavior
of the motions in the essential subspace with a diffusion constant (for these essential
coordinates) of roughly 4:4 x 10-10m , s’ . This suggests that there are no large free
energy differences between regions inside the boundaries of the essential subspace.
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Figure 5: Cumulative square projections (inner
products) of eigenvectors 1-5, 10, 50, 100 and 200
obtained from the three MD runs, over the whole
eigenvectors set of the ED sampling.

Figure 6: The average square displacement per
degree of freedom of 30 parts of 20 ps free MD of the
combination of the projections along eigenvectors 1,
3 and 4, from their starting positions. The solid line
corresponds to the actual square distances, the dashed
line is a linear regression to the experimental data.
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Conclusions

The CPU time needed for the calculations described here correspond to 372 ps of
usual MD for the system that we studied. As was shown in Fig. 1a and 1b, the vol-
ume of the configurational space which was sampled with this new method is sig-
nificantly larger than the volume sampled during the three conventional MD runs,
which added up to a total of 600 ps. Considering that the three free MD simulations
were started from three independent structures from the NMR cluster (which makes
the volume of the essential subspace sampled by these simulations already signifi-
cantly larger than it would have been in case one single simulation of 600 ps would
have been performed), we can conclude that with this procedure we can sample the
configurational space of proteins more efficiently than with usual MD. Since the
geometrical properties which were evaluated to check the quality of the protein
structures produced by this procedure (Fig. 2) fluctuate in a range comparable to
the range in which these properties fluctuate in usual MD simulations, we have no -
indication that the constraints applied influenced the protein structure in an unde-
sirable fashion. Hence, we have been able to generate a large ensemble of structures
quite distant from the starting structure but with comparable geometrical and phys-
ical properties (Figs. 2, 4). In addition the results suggest (Fig. 5) that a MD simu-
lation of a few hundred picoseconds could be used to define approximately the
exact essential subspace of a protein to start the ED sampling. It should be noted
that the ED sampling procedure cannot guarantee the discovery of possible distinct
conformational states, of which no information was available. Finally the diffusion-
like behavior of the essential coordinates (Fig. 6) suggests that different regions of
the essential subspace should have comparable free energies. We are currently
improving the ED sampling method and we are performing an extended ED sam-
pling of a 13 residues peptide in order to fully explore the boundaries of the (back-
bone) configurational space.
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Appendix A

In this appendix we describe the constraint for a radius expansion or contraction
with respect to a reference position in the essential subspace. In this case our con-
straint G (eq. 4) is:

G(E(t+ At);t + At) = |€(t) + A€y + AE, — &> — Tt +At) =0 8

&, is the reference position and r2(t + At) is a prescribed positive function of time
defining the expansion or the contraction. Equation 6 can be written as:

AL - 2XM(EX(t) + Ay + AL - &) =0 9

or

i 2X i i g
Ag = T (€ + MG - €) 10

Now, by inserting eq. 10 into eq. 8, and by defining £= {%; Wwe obtain:
IE(E) + AL+ e(€1() + AL ~ &) — &P —r*(t+ At) =0 11

or

Yle+1)(E(@) + ALY — (e+ D& —r(t+ At) =0 12



and therefore

2 _ r(t + At) 13
V= 0+ st -6
or
r(t + At)
= --1 _—
TN e + A - & 1
combining equs. 10 and 14 we finally obtain:
- TIPS Gt
Aﬁc - [ﬁ(t) + Aed 60][ 1+ |£(t) + Agd _ EOI] 15

which gives at every time step At the correction that has to be applied. The results
presented in this paper were generated by using r(#)=y with ybeing a small posi-
tive constant (0.0004 nm per step), and using only three of the essential eigenvec-
tors (1, 3 and 4) to define §.
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