
ARTICLE
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The accurate calculation of the binding free energy for arbitrary ligand–protein pairs is a

considerable challenge in computer-aided drug discovery. Recently, it has been demonstrated

that current state-of-the-art molecular dynamics (MD) based methods are capable of making

highly accurate predictions. Conventional MD-based approaches rely on the first principles of

statistical mechanics and assume equilibrium sampling of the phase space. In the current

work we demonstrate that accurate absolute binding free energies (ABFE) can also be

obtained via theoretically rigorous non-equilibrium approaches. Our investigation of ligands

binding to bromodomains and T4 lysozyme reveals that both equilibrium and non-equilibrium

approaches converge to the same results. The non-equilibrium approach achieves the same

level of accuracy and convergence as an equilibrium free energy perturbation (FEP) method

enhanced by Hamiltonian replica exchange. We also compare uni- and bi-directional non-

equilibrium approaches and demonstrate that considering the work distributions from both

forward and reverse directions provides substantial accuracy gains. In summary, non-

equilibrium ABFE calculations are shown to yield reliable and well-converged estimates of

protein–ligand binding affinity.
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The accurate prediction of binding free energies for
protein–ligand complexes is of special interest in compu-
tational drug design and drug discovery campaigns

more broadly. While there are various strategies to predict
binding affinities, ranging from ligand-based chemoinformatics
approaches1 to structure-based docking2, alchemical free energy
calculations based on the first principles of statistical mechanics
have recently been shown to achieve remarkable accuracy on a
wide range of pharmaceutically relevant systems without the need
for prior training data3,4.

Common approaches rely on molecular dynamics (MD)
simulations to explore the phase space of the ligand and
target protein both in their bound and unbound states. A
protein–ligand system represented at an atomistic level, together
with the solvent and salt, may comprise more than a hundred
thousand particles. Achieving sampling convergence for such
large biomolecular systems presents a considerable challenge,
especially if the full process of ligand binding to a target protein is
to be simulated. However, if only the free energy difference
between the end states—the bound and unbound states—is of
interest, an alchemical approach can be employed to circumvent
the computationally expensive physical path5. Indeed, alchemical
methods exploit the control we have over the potential energy
function to couple/decouple the ligand (or part of it) from the rest
of the system, when in the solvent and in complex with a protein,
and estimate the same free energy differences that otherwise
would require explicit simulation of the physical binding process.

To facilitate the convergence of alchemical free energy esti-
mates, relative (ΔΔG) rather than absolute (ΔG) Gibbs free
energy differences are often sought. In this case, for a set of
ligands of interest, the change in free energy difference (ΔΔG)
with respect to one or a few reference ligands is estimated; the ΔG
for these ligands is then recovered by adding the ΔΔG estimate to
the known ΔG of the reference compounds. Because this setup
requires the alchemical perturbation of only a small part of the
ligand, in contrast to the coupling/decoupling of a whole mole-
cule, it can in principle provide faster convergence. These cal-
culations, when used in conjunction with state-of-the-art force
fields, have been shown to provide predictions that, on average,
deviate less than 1 kcal/mol from experimental measurements3,4.
However, relative binding free energy (RBFE) calculations are not
always well-suited to the problem at hand. For instance, when no
known or suitable reference compound is available, when the aim
is to identify the binding pose of a ligand, or when one is inter-
ested in ligand selectivity against different protein targets. In these
situations, the direct calculation of the ligand–protein binding
free energy is required.

Absolute binding free energy (ABFE) calculations require a
different setup to that used for RBFE calculations6,7. The sub-
stantially larger perturbation of the system upon coupling/
decoupling of the whole ligand needs longer sampling times to
achieve convergence in comparison to the sampling needed to
converge ΔΔG estimates. Although to our knowledge no large-
scale studies on atomistic alchemical ΔG calculations have been
published, a few small-scale studies hint at a lower accuracy
compared to RBFE calculations. Although in the limit of infinite
sampling both RBFE and ABFE calculations should return the
same results, and thus provide the same accuracy, the empirical
observation of lower accuracy for ABFE might be related to these
higher sampling requirements. In the literature, ABFE calculation
root mean squared error (RMSE) from the experimental mea-
surements varied from 0.8–1.9 kcal/mol for T4 lysozyme
inhibitors8–10 to 2.3 kcal/mol for FKBP12 inhibitors11. Aldeghi
et al. were able to reach a RMSE of 0.8 kcal/mol for 11 ligands
binding to the first bromodomain of the bromodomain-
containing protein 4 (BRD4(1))7. In a follow up study, the same

authors investigated the selectivity of a compound (bromosporine)
binding to a set of 22 bromodomains12, and reported a RMSE of
1.9 kcal/mol.

The prevalent approach to carrying out alchemical free energy
calculations is free energy perturbation (FEP) based on equili-
brium simulations13. This method requires running a number of
equilibrium simulations along the alchemical path at discrete
steps. To control the system’s position along the alchemical
coordinate, a parameter λ is used to couple the Hamiltonians of
the two physical end states. To then estimate the free energy
difference between two states, the estimators derived by
Zwanzig13 or Bennet14 (like Bennet’s Acceptance Ratio, BAR) are
typically used. The ΔG between the end states is then recovered
by adding the free energy differences between all λ windows. A
multistate version of BAR can also be used to obtain the ΔG value
by considering all λ windows at once15. Another popular
approach to estimate free energy differences from equilibrium
alchemical simulations is thermodynamic integration (TI), where
the average gradient of the Hamiltonian with respect to λ is
integrated from λ= 0 to λ= 116.

A conceptually different approach relies on estimating ΔG
from non-equilibrium transitions between the end states. In this
case, equilibrium simulations are performed only for the two
physical end states. Subsequently, rapid transitions through
alchemical space are started, driving the system out of equili-
brium and reaching the other physical state at the end of the
alchemical morphing event. During such a transition, the force
exerted along the alchemical λ coordinate is monitored and,
afterward, integrated to obtain the work required for the transi-
tion. This method is the non-equilibrium, equivalent of the TI
approach used for equilibrium calculations17. Having obtained a
number of non-equilibrium work values, the free energy between
the end states can be recovered by employing Jarzynski’s
equality18 (for uni-directional transitions) or the Crooks Fluc-
tuation Theorem19 (for bi-directional transitions).

There is no clear consensus in the literature regarding the com-
parative efficiency of equilibrium and non-equilibrium approaches:
probing various systems and using disparate efficiency measures,
different authors have reached opposing conclusions20–23. Although
the equilibrium methodology is more frequently employed, non-
equilibrium methods have been used as well, for instance, in relative
free energy calculations for amino acid mutations and protein
thermostability24,25, drug resistance26–28, nucleotide mutations for
protein–DNA interactions29, as well as modifications of small organic
molecules for assessing ligand–protein binding4. Recently, the
applicability of non-equilibrium simulation to absolute binding free
energy calculations has been explored for host-guest30,31 and
protein–ligand systems32, and for the prediction of unbinding rate
constants in protein–ligand complexes33.

In this work, we assessed the applicability of non-equilibrium
methods to ABFE calculations. To do this, we firstly selected two
sets of protein–ligand complexes (Fig. 1) that have been pre-
viously studied with an equilibrium FEP approach enhanced by
Hamiltonian replica exchange (HREX)7,12. The first dataset
investigated the specificity of BRD4(1) against 11 inhibitors
(Fig. 1a). The second dataset investigated the selectivity of bro-
mosporine against 22 bromodomains (Fig. 1b). We compared the
results from different methodologies: equilibrium FEP with and
without HREX, as well as one- and bi-directional non-equili-
brium TI. In addition, to explore the performance of alchemical
approaches in a protein with a large conformational change
between its apo and holo states, we calculated binding free
energies for a set of 5 ligands interacting with the T4 lysozyme
(L99A) protein. Overall, we found that non-equilibrium bi-
directional approaches provide an equivalent performance to
HREX-enhanced equilibrium FEP calculations.
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Results
Transition time tuning. In this work, we studied how the equi-
librium sampling time, as well as the number and length of non-
equilibrium transitions, affect the convergence of the free energy
estimates, while keeping the overall simulation time invested
constant. Prior to starting this systematic analysis, we identified an
optimal transition time for the non-equilibrium transitions, which
would be held fixed for the rest of the investigation.

In a recent study, a search for an optimal non-equilibrium
transition time in alchemical calculations of relative free energies
identified a switching time of 80 ps to readily yield state-of-the-art
accuracy27. It is, however, expected that the substantially larger
perturbations required for the ABFE calculations might require
longer transitions to reach convergence. To probe for an optimal
transition time, we calculated the binding free energies of 7
ligands (a subset of those in a previous study7) to the BRD4(1)

Fig. 1 Overview of the investigated systems. a Set of 11 ligands binding to the bromodomain BRD4(1) assembled in ref. 7. b Set of 22 bromodomain
complexes with the ligand bromosporine assembled in ref. 12. c Crystallographic structure of T4 lysozyme complexed with a ligand (4w57). The inset
shows an enlarged binding site of the aligned apo (4w51, orange) and holo (4w57, blue) structures, highlighting the major loop motion upon ligand binding.
Also shown are 5 ligands binding to T4 lysozyme that were investigated in this work.
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bromodomain using different lengths for the non-equilibrium
transitions (Fig. 2, Fig. S1).

Bias. Firstly, we compared the ΔG values calculated with different
non-equilibrium transition times to one another (Fig. 2a). The
obtained results appear to converge to an average unsigned dif-
ference (AUE) below 1 kcal/mol for all transitions longer than
100 ps. Similarly, the Pearson correlation between any two tran-
sition times longer than 100 ps reaches the value of at least 0.69
(there is, however, a substantial standard error associated with
this measure, as the investigated dataset is comprised of only 7
ligands). As expected, the shorter transitions yield estimates with
larger associated uncertainties (Fig. 2b).

It is also useful to evaluate the convergence of the ΔG estimates
for each transition time independently. In Fig. S2, we assess the
convergence of each estimate using a convergence measure
derived to quantify the work distribution overlap for bi-
directional non-equilibrium free energy estimates34. This analysis
differs from the one performed in Fig. 2a, as the convergence of
each estimate is assessed independently, rather than by compar-
ison to the calculations obtained using different transition times.
The convergence measure used (a detailed description is provided
in Supplementary Note 1) ranges from −1 to 1, with well-
converged estimates returning a value close to 0. This analysis
indicates that 100 ps transitions did not yield sufficient work
distribution overlap to ensure a reliable free energy estimate (value

Fig. 2 Binding free energy calculations for a subset of 7 ligands binding to BRD4(1). a Comparison of the ΔG values estimated from simulations using
different transition times in terms of average unsigned error (AUE) and Pearson correlation. The green frames in the plot mark the transition times for
which the data in (b) is shown. b ΔG values from non-equilibrium TI calculations using 500 ps and 20 ns transitions plotted against each other. In the
panel, we also provide a linear regression fit as well as RMSE, AUE, Kendall, Pearson, and Spearman correlations. c Average unsigned error (AUE) with
respect to experimental measurements for the uni- and bi-directional non-equilibrium TI calculations. The bi-directional non-equilibrium TI protocol
shows a consistent AUE with varying transition time, while uni-directional estimates based on Jarzynski’s equality converge only with longer transition
times. The green circles in the plot mark the transition times for which the data in (b) is shown. The uncertainties denote standard errors obtained by
bootstrapping.
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close to 1). A transition time of 500 ps, however, significantly
improved convergence, with the exception of Ligands 2 and 6. In
the results and analyses discussed in the next section, we will show
that the lack of convergence for these two ligands can be alleviated
by including more independent repeats while retaining 500 ps
transition time (Fig. S3).

Comparison to experiment. Interestingly, the accuracy of the bi-
directional free energy estimates averaged over the ligands, when
compared to the experimental reference, is independent on the
transition time (Fig. 2c). This, however, is in no contradiction to the
earlier observation that transition time has some influence on the
estimated ΔG: the free energy estimate of specific ligands can change
depending on the length of the non-equilibrium transitions (Fig. S1).
Fig. 2c rather indicates that, for the small chemical library at hand,
the occasional gain or loss in accuracy due to longer switching times
is likely to be within the level of statistical noise. While long sampling
times of about 5 ns (Fig. 2c, Fig. S1) are needed to converge uni-
directional free energy estimates based on Jarzynski’s equality, the bi-
directional estimates (non-eq TI BAR) converge with substantially
shorter transitions of less than a nanosecond. These observations
further support the notion that already sub-nanosecond transition
times are sufficient to obtain ΔG estimates of low bias and high
accuracy in reproducing experimental measurements. Longer tran-
sitions may still be required in specific instances (e.g., particularly
large, flexible or charged ligands).

Considering the overall results of the transition time
investigation, in the rest of this study, we used a transition time
of 500 ps for all uncharged ligands. For charged ligands, where we
observed convergence issues, we also explored the effect of longer
transition times.

BRD4(1) specificity. To test the applicability of non-equilibrium
free energy calculations to study ligand binding specificity, we
calculated ΔG values for 11 ligands binding to the BRD4(1)
bromodomain. This ligand set has been explored previously with
HREX FEP7 and represents a superset of that used in the non-
equilibrium transition time analysis. Note that two ligands in this
extended set had a net charge.

Overall results and comparison to experiment. From the overall
method comparison (Fig. 3a, Table S1) the non-equilibrium TI
approach with the 500 ps transitions time yielded a statistically
indistinguishable accuracy compared to both FEP variants.
Interestingly, HREX enhancement does not appear to give a
significant boost to the FEP accuracy.

It is noteworthy that the accuracy of non-equilibrium TI
calculations suffered from the estimate of one of the charged
ligands: Ligand 4. The issue becomes more evident when
monitoring the convergence of the simulations by quantifying
the overlap of the work distributions (Fig. S3). Ligand 4 was
clearly identified as lacking a well-converged estimate. For
this ligand, we thus performed slower alchemical transitions.
The transitions of 1 ns had the expected effect of enhancing the
convergence (Fig. S3) and facilitating the agreement with the
experimentally measured value (Fig. 3b). Extending the transition
time to 2 ns, further increases the convergence, but the accuracy
of the estimate changes only marginally.

Having observed that the improved convergence increased the
calculated accuracy for Ligand 4, for the sake of consistency, we
have also probed the effect of increasing the transition time for
the other charged ligand (Ligand 1) too, which did not suffer
from convergence issues with shorter (500 ps) switching time

Fig. 3 Binding free energy calculation summary for the BRD4(1) specificity study. a Calculated vs experimental ΔG values for the HREX FEP7, FEP
without sampling enhancement, and non-equilibrium TI approaches. Two versions of the latter method are depicted: all transitions of 500 ps and extended
1 ns transitions for the charged ligands (Ligand 1 and Ligand 4). The larger circles in every panel denote Ligand 1 and Ligand 4. In the panels we also provide
a linear regression fit as well as RMSE, AUE, Kendall, Pearson, and Spearman correlations. b Unsigned error (UE) by ligand for each of the considered
protocols. c Average unsigned error (AUE) with respect to experimental measurement for varying sampling time invested in each of the approaches
studied. The time reflects only the sampling invested in the protein–ligand coupling part of the calculation. The dashed line for HREX FEP7 marks the
accuracy of the estimate using the whole available sampling, i.e., it does not depict dependence on the sampling time. The inset shows the behavior of AUE
for FEP and bi-directional non-equilibrium TI when less than 10% of the sampling production time is considered for the ΔG estimation. The uncertainties
denote standard errors obtained by bootstrapping.
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(Fig. S3). In this case, the longer transitions had only a minor, and
statistically insignificant effect both on the convergence measure
as well as on the accuracy of the ΔG estimate.

As described in the “Methods” section, all FEP and non-
equilibrium TI calculations performed in this work employed the
same amount of sampling as the HREX FEP approach used by
Aldeghi et al.7. This allows for a convenient comparison of the
convergence of each method studied here. Analysis of the
unsigned error from experiment averaged over all 11 ligands
shows rapid convergence of both the equilibrium FEP and non-
equilibrium TI calculations (Fig. 3c). Using only 10% of the whole
invested sampling time would already provide with an accuracy
comparable to the final one that used 100% of the invested
sampling time. The inset in Fig. 3c shows the accuracies achieved
with less than 10% of sampling time, which highlights that the bi-
directional non-equilibrium TI estimate converges significantly
faster than FEP. The uni-directional estimates converged slower
and, given equivalent sampling time, did not provide the accuracy
of the other approaches.

Bias. While the AUE from experimental measurements provides
insight into the convergence in terms of accuracy, it is also
informative to inspect the bias of the free energy calculations. To
assess this, we calculated the averaged unsigned difference of the
estimated ΔG at a given time with respect to the final ΔG estimate
(Fig. 4a). Monitoring ΔG estimates for each ligand separately
provides further insight into the convergence trends (Fig. S4). The
analysis of bias and ligand ΔG traces over time reveals a rapid
convergence of the bi-directional non-equilibrium TI estimates.
Using 10% of the overall sampling would result in an average bias
of only 0.5 kcal/mol. The uni-directional estimators converge
much more slowly. The equilibrium FEP approach also showed a
larger bias than the bi-directional non-equilibrium TI across all
sampling times.

A comparison of the ΔG estimates of the three computational
protocols (HREX FEP, FEP, and non-equilibrium TI) reveals
that they all yield similar results (Fig. 4b). Indeed, the approaches
cluster tightly together when compared in terms of AUE and
Pearson correlation. The results from computation and experi-
ment are indistinguishable, as the differences between all the pair-
wise comparisons fall within the uncertainty range.

Bromosporine selectivity against multiple bromodomains. The
selectivity of bromosporine against 22 bromodomains has been
explored previously in an ABFE calculation study that used
HREX FEP12. The summary of the main results from that study is
depicted in Fig. 5. Here, we have employed FEP without HREX,

as well as non-equilibrium TI for a comparative analysis on the
same dataset. The total sampling time invested in each ΔG esti-
mate was identical for all methods compared in Fig. 5.

Overall results and comparison to experiment. For this dataset, the
HREX FEP outperformed FEP in absolute terms (RMSE and
AUE), but had only a minor and statistically insignificant advan-
tage over the non-equilibrium approach. In terms of correlation
(Kendall, Pearson, and Spearman), the differences between FEP,
HREX FEP, and non-equilibrium TI are not statistically significant.

A notable difference between the FEP methods and non-
equilibrium TI comes from the estimated uncertainties for
individual free energy estimates (Fig. 5a, b, Table S2). The error
bars in case of the non-equilibrium TI are substantially larger than
those for the FEP estimates. This effect is not, however, a feature
of the particular free energy calculation method, but rather a
manifestation of the stochastic nature of molecular dynamics
simulations. For this selectivity dataset, non-equilibrium TI
calculations were repeated multiple times (see “Methods”) and
the error bars were derived from independent simulation replicas.
In contrast, FEP and HREX FEP used only a single simulation to
estimate free energy, thus the associated error is that of the free
energy estimator only. In fact, on the BRD4(1) specificity dataset,
where repeated simulations were used for uncertainty estimates of
all methods, uncertainties were comparable across all approaches
(Fig. 3a, b).

In terms of convergence with respect to the experimental
measurement (Fig. 5c), the methods follow a similar pattern as
observed in the BRD4(1) specificity dataset. The accuracy of the
bi-directional non-equilibrium TI approach does not change with
an increase in sampling time. In fact, the estimate converges
almost immediately after the equilibration (inset in Fig. 5c). FEP
slowly converges to the same accuracy as HREX FEP and bi-
directional non-equilibrium TI. The uni-directional non-equili-
brium TI estimates converge significantly slower.

Bias. The bias for all the approaches is slightly larger for the
bromosporine selectivity dataset (Fig. 6) when compared to the
BRD4(1) specificity case (Fig. 4). The bi-directional non-equili-
brium TI has the lowest bias: smaller than 1 kcal/mol even when
using as little as 10% of the overall sampling data. The uni-
directional estimates converge significantly slower and have a
larger bias. The bias of the non-enhanced FEP method is slightly
larger than that of the bi-directional non-equilibrium TI.

From the matrix comparing all methods and experiment in
terms of AUE and Pearson correlation (Fig. 6b), the HREX FEP
and non-equilibrium TI approaches appear to yield the most

Fig. 4 Bias analysis of absolute binding free energies for a set of 11 ligands binding to BRD4(1). a Bias with respect to the final estimate using the whole
available sampling against the invested sampling time. b Matrix comparing the calculation approaches, as well experimental measurement, in terms of
Pearson correlation and average unsigned error (AUE). The uncertainties denote standard errors obtained by bootstrapping.
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similar ΔG estimates. Interestingly, these latter approaches show
higher mutual agreement than the HREX FEP and non-enhanced
FEP.

Different Apo and Holo states: T4 Lysozyme (L99A). The
bromodomain investigations allow comparing the performance of
alchemical approaches in computing absolute ligand–protein
binding free energies. It is, however, important to probe whether
the observed trends are transferable to other systems. In particular,

it is interesting to explore a protein exhibiting conformational
differences between its apo and holo states.

A mutated L99A T4 lysozyme serves as a good test system for
such a scenario: a large loop motion is observed at its binding site
upon ligand binding (Fig. 1c). Lim et al.35 demonstrated that
insufficient sampling of this loop movement in MD simulations
may result in inaccurate estimation of relative binding free
energies. In their work, the authors used the FEP approach. In
addition, they probed the effects of sampling enhancement by
means of replica exchange solutetempering (REST)36. It was

Fig. 6 Convergence analysis of absolute binding free energies for bromosporine binding to 22 bromodomains. a Bias with respect to the final estimate
using the whole available sampling against the invested sampling time. bMatrix comparing the calculation approaches, as well experimental measurement,
in terms of Pearson correlation and average unsigned error (AUE). The uncertainties denote standard errors obtained by bootstrapping.

Fig. 5 Binding free energy calculation summary for the bromosporine selectivity against 22 bromodomains. a Calculated vs experimental ΔG values for
the HREX FEP12, FEP without sampling enhancement and non-equilibrium TI approach. In the panels, we also provide a linear regression fit as well as RMSE,
AUE, Kendall, Pearson, and Spearman correlations. b Unsigned error (UE) by bromodomain for each of the considered protocols. c Average unsigned error
(AUE) with respect to experimental measurement for varying sampling time invested for each of the investigated approaches. The time reflects only the
sampling invested in the protein–ligand coupling part of the calculation. The dashed line for the HREX FEP value12 marks only the accuracy of the estimate
using the whole available sampling, i.e., it does not depict dependence on the sampling time. The inset shows the behavior of AUE for FEP and bi-directional
non-equilibrium TI when less than 10% of the sampling production time is considered for the ΔG estimation. The uncertainties denote standard errors
obtained by bootstrapping.
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observed that only long simulations for every discrete λ window
(up to 55 ns) ensured equilibration of the binding site
conformers. Given insufficient sampling, the simulations initiated
with apo structures would yield binding free energies significantly
different from those obtained when starting from holo structures.

In contrast to the FEP approach, the non-equilibrium protocol
allows to easily initialize the apo and holo simulations with
different starting structures (e.g., apo and holo conformers). This
means that the ligand decoupling simulations can be initiated
from the appropriate ensemble for the ligand bound to the
protein (holo state), while the coupling simulations can be started
from an ensemble initialized with an apo conformer.

We have calculated the binding free energies between T4
lysozyme and 5 ligands (Fig. 1c) for which experimentally
measured affinities have been reported37. Visualizing ΔG
changes with increased sampling time (Fig. 7a) illustrates that
the FEP and HREX FEP estimates that are initialized from either
apo or holo states need longer times to converge than the non-
equilibrium TI initialized with both states. This effect is further
summarized in Fig. 7b, where for each method and ligand an
absolute difference between the first and last free energy estimate
(with respect to the sampling time) is depicted. For example, the
benzene (structure 4w52) FEP ΔG calculation, which was started
from the apo conformer, changes by almost 2 kcal/mol from the
first estimate (380 ns of cumulative sampling time) to the last
estimate (2900 ns). Enhanced sampling HREX FEP calculation
initiated with the same apo conformer facilitates the conver-
gence: the first and last ΔG estimates differ by less than 1 kcal/
mol. Interestingly, a faster convergence of HREX FEP is not a
general feature, as HREX FEP started from the holo conformer
shows a significantly slower convergence than FEP (also started
from the holo conformer) for the structures 4w53 and 4w55. The
non-equilibrium TI result changes the least with sampling time
in comparison to other methods for all the considered ligands,

except for 4w55, where all methods show a comparable change in
ΔG over time.

The simulations initialized from apo and holo structures do not
necessarily converge to the same result in terms of the ΔG value
(Fig. 7c, Table S3). The differences between the final free energy
estimates from apo and holo simulations are significant in
multiple investigated cases. FEP calculations without sampling
enhancement converge to the same result only for the 4w55 case,
while HREX facilitates the convergence between apo and holo
simulations in most cases. The non-equilibrium TI method shows
a diverse set of outcomes in this respect: for the 4w53 and 4w55
cases the result is similarly close to both HREX Apo and HREX
Holo calculations while for the other ligands the result is closer to
HREX Apo result.

Discussion
The presented study reveals that the non-equilibrium TI
approach is a suitable method for protein–ligand absolute binding
free energy calculations. The accuracy of this simulation protocol
is on par with the equilibrium FEP even when the latter approach
is enhanced by means of Hamiltonian replica exchange. In fact,
sampling enhancement by means of HREX does not necessarily
improve the accuracy of the estimated free energies, which is in
agreement with a recent observation from the relative free energy
calculation study38.

For the explored systems, the overall accuracy is comparable to
that observed in relative free energy calculations3,4, where the
gold standard is 1 kcal/mol in AUE. The observed high accuracy
presents an interesting result, considering that the solvation free
energies are highly sensitive to the inaccuracies in molecular
mechanics force field parameterization39. Similar to relative free
energy calculations, the accuracy varies depending on the system
studied. In the current investigation we observed the AUE to be
lower than 1 kcal/mol for the first dataset related to BRD4(1)

Fig. 7 Free energy calculations of the ligands binding to T4 lysozyme (L99A). a Free energy values calculated with different methods plotted against the
sampling time. The time reflects only the sampling invested in the protein–ligand coupling part. b Absolute differences between the first free energy
evaluation (cumulatively using approximately 380 ns for each method in the protein–ligand coupling part) and the last free energy evaluation (~2900 ns
per method). c Absolute difference between the calculated free energy (final value, ~2900 ns per method) between several selected methods. The
uncertainties denote standard errors obtained by bootstrapping.
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specificity as well as for the T4 lysozyme ligand set, and an AUE
slightly larger than 1.5 kcal/mol for the dataset related to bro-
mosporine selectivity. In spite of the large perturbation involved
in the (de)coupling of a whole ligand, the ΔG estimates obtained
by the bi-direction non-equilibrium TI converged rapidly. Indeed,
the overall accuracy reported could have been achieved with only
~10% of the whole invested sampling. The non-equilibrium
approach also showed lower bias than the equilibrium FEP
approach. This is in line with the recent observations for ABFE
calculations in host-guest systems40.

The uni-directional estimates showed significantly lower
accuracy, slower convergence, and larger bias. Only with a sub-
stantially increased transition time the accuracy of the uni-
directional estimates reached that of the bi-directional estimates.
However, if possible, the sampling time that is spent in the
alchemical transition to converge uni-directional estimates should
preferably be invested in a more thorough exploration of the
ensembles at the physical end states, which define the free energy
difference.

For most of the protein–ligand systems explored in this work,
the end-state sampling we invested appears to be sufficient to
achieve converged and accurate binding free energy estimates. In
this respect, bromodomains present a convenient test system:
given the rigidity of their binding pockets, holo structures can be
used to initialize simulations in the apo state without loss in ΔG
prediction accuracy, even when short equilibrium simulations are
used. The T4 lysozyme protein–ligand systems illustrate the
opposite situation, where starting the simulations from apo or
holo states significantly influences the calculation outcome. Here,

the end states (apo and holo) differ substantially, and more
sampling time is required to obtain equilibrated structural
ensembles.

Another important aspect to consider when comparing the
calculation methods is the uncertainty of the estimated ΔG values.
Fig. 8 summarizes the uncertainties for one branch of the ther-
modynamic cycle: ligand coupling to the protein (ΔGprot). We
estimated standard errors using two different approaches. In the
first, we calculated the standard error of multiple independent
repeats: this approach quantifies the uncertainty in the estimates
due to the stochastic sampling of different phase space regions in
each simulation repeat. The standard error calculated this way will
decrease by the factor 1/√n with the number of repeats n, thus in
Fig. 8 we list explicitly the number of repeats considered for a
corresponding uncertainty estimate. In the second approach, we
estimated uncertainty from a single simulation repeat, using either
the analytical uncertainty estimator for MBAR as implemented in
pymbar15 (for HREX FEP and FEP) or bootstrap (for the non-
equilibrium TI). It is important to note that, in this case, the MBAR
uncertainty estimator converges to one standard deviation of a
normal ΔG distribution for a large number of samples, while the
bootstrapped uncertainty estimators correspond to the standard
errors of the mean of ΔG. For the cases with multiple repeats,
uncertainty propagation was applied. Overall, we observe that the
uncertainty estimates obtained from single simulations under-
estimate the actual spread in the ΔG values one obtains when
repeating the calculations. This effect is particularly pronounced
for the non-enhanced FEP case, and slightly smaller for HREX FEP
and non-equilibrium TI calculations (Fig. 8a). Because a single

Fig. 8 Distributions of uncertainty estimates for the ligand–protein coupling free energies. The solid line depicts estimator uncertainty calculated from
single simulation repeats. The dashed line shows the uncertainties obtained from independent simulation repeats. For the FEP no HREX case the
uncertainty estimators from the whole data, as well as from uncorrelated samples (σΔGdecorr) are shown. a A set of 11 ligands binding to BRD4(1).
b Bromosporine binding to 22 bromodomain proteins. The uncertainties denote standard errors of the mean.
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calculation repeat was carried out for the bromosporine study with
HREX FEP and FEP, we do not have uncertainty estimates from
multiple repeats for these approaches (Fig. 8b). However, the
uncertainty distributions for a single repeat closely resemble those
observed for the BRD4(1) specificity study (Fig. 8a). The MBAR
uncertainty estimator might be suffering from the presence of
correlated data points in the analyzed sample. When only uncor-
related samples are used (σΔGdecorr)41 the estimated uncertainty
increases significantly, albeit not to the level of that estimated from
the independent repeats. The decorrelation procedure, however,
does not have a significant effect on the uncertainty estimation
from independent simulation repeats. All in all, these observations
highlight the fact that one should not rely on uncertainty estimates
from single simulation trajectories, but rather derive error bars
from independently repeated calculations42–44.

The apparent underestimation of the uncertainties further
complicates the convergence analysis. Judging from the ΔG time
traces (Figs. S4, S5), the bi-directional non-equilibrium TI esti-
mates converge quickly and are stable over time. In comparison,
the results obtained with equilibrium FEP converge slower. Even
considering an apparently converged non-equilibrium TI result, a
small (RMSE < 1 kcal/mol), yet statistically significant difference
between the non-equilibrium TI and equilibrium HREX FEP
calculation remains (Figs S6, S7). This disagreement might indi-
cate that one of these approaches is still not sufficiently con-
verged. On the other hand, considering that the uncertainty of the
HREX FEP estimates is likely underestimated, the statistical sig-
nificance of the difference between the estimates of the two
methods might be an artefact caused by an underestimation of
the uncertainty.

Conclusions. We have shown that ABFE calculations based on
the non-equilibrium TI approach yield binding free energy esti-
mates that are equivalent to those calculated with equilibrium
FEP approaches, also when these are enhanced by means of
Hamiltonian replica exchange. This observation held for all test
sets explored here, which involved a total of 38 binding free
energy estimates across 11 different small-molecules binding to
BRD4(1) protein, bromosporine binding to 22 bromodomains,
and 5 ligands binding to T4 lysozyme. These results thus
demonstrate the feasibility of non-equilibrium MD simulations
for the efficient estimation of ligand–protein binding affinities
and lay the foundations to further explore these approaches as an
alternative to equilibrium MD methods. To facilitate the setup of
both equilibrium and non-equilibrium ABFE calculations, we
provide a workflow as a part of the pmx package at https://github.
com/deGrootLab/pmx. Overall, this study provides further evi-
dence that alchemical calculations can yield accurate predictions
of absolute protein–ligand binding free energies.

Methods
Simulated systems. In this work we explored the accuracy of ABFE calculations in
three scenarios. Firstly, we studied 11 ligands binding to BRD4(1) (Fig. 1a). The
structures and topologies for the ligands and protein were identical to those used by
Aldeghi et al.7. The experimental binding free energy values were also extracted
from the same source. Of the 11 ligands, 9 were neutral and two carried a charge of
+1 (ligands 1 and 4). Prior to calculating the free energy differences for the whole
ligand set, a subset of these compounds was used in the search for an optimal
alchemical transition time. This subset comprised ligands 2, 3, 5, 6, 7, 8, and 9
(Fig. 1a).

Secondly, we studied the ligand bromosporine complexed with 22 proteins
(Fig. 1b). The structures, topologies, and experimental binding ΔG values were
extracted from the previous investigation by Aldeghi et al.12.

The third investigated system was T4 lysozyme (L99A) in complex with 5
ligands (Fig. 1c). The starting structures were based on the crystallographically
resolved apo (pdb id 4w51) and holo (4w52, 4w53, 4w54, 4w55, and 4w57)
structures45.

Free energy calculation. We used a well-established procedure to calculate the
absolute protein–ligand binding free energy. Following the description of the
thermodynamic cycle outlined by Aldeghi et al.7, the binding free energy calcu-
lation is split into a ligand solvation part (ΔGsolv), a protein–ligand part (ΔGprot),
and an analytically-computed contribution due to restraining the decoupled ligand
to the protein (ΔGrestr). The latter part applied the restraints described by
Boresch et al.6. The protein and ligand atoms that were used for restraining, as
well as the restraint strength, were identical to those used by Aldeghi et al.7,12.

To be able to compare all the investigated approaches, we considered the ΔG as
calculated without any additional post-hoc correction. While the long-range
dispersion or finite size electrostatic corrections could modulate the overall
predicted ΔG values, in the current work we concentrated only on the raw outcome
of each of the investigated methods. Furthermore, we aimed at using an equivalent
amount of sampling time for each computational strategy studied. For the
equilibrium calculations, the same protocols as described by Aldeghi et al.7,12 for
HREX FEP were used. For the non-equilibrium calculations, the sampling time was
distributed over the individual parts of the protocol to match the FEP simulation
time as closely as possible.

Equilibrium FEP. For the FEP simulations of the first dataset (Fig. 1a, BRD4(1)
specificity), 3 independent ΔG calculation repeats were performed. Ligand 11 was
the only exception, in this case, two poses were considered separately, and two
simulation repeats were performed for each pose (total of four ΔG calculations) in
accord with the procedure used in ref. 7. Each ligand solvation calculation was
stratified into 31 windows, while the protein–ligand coupling path was divided into
42 windows. The stratification protocol followed that described in ref. 7. Every
window along the alchemical coordinate consisted of 0.5 ns equilibration in the
NVT ensemble, followed by 1 ns in the NPT ensemble as equilibration, and finally
10 ns as production run. In total, 2.6 μs were invested in each ΔG estimate (1.7 μs
for each pose of Ligand 11), matching that of the HREX FEP protocol in ref. 7.

The FEP protocol used in the simulations of the second dataset (Fig. 1b,
bromosporine binding to 22 bromodomains) followed that used in ref. 12, matching
the stratification strategy and sampling times. Five independent repeats (each using
31 windows) were performed to calculate ΔGsolv, whereas a single repeat was
performed to calculate ΔGprot (using 42 windows). Each window consisted of an
equilibration of 0.5 ns in the NVT ensemble, followed by 1 ns in the NPT ensemble,
and a 15 ns production run, for a total of 3.3 μs per ΔG estimate, of which 0.7 μs
were invested into the protein–ligand coupling simulations.

For the T4 lysozyme simulations, FEP and HREX FEP protocols were used by
initializing the simulations with the apo (4w51) and respective holo structures45.
The simulations used 16 windows to calculate ΔGsolv and 21 windows for ΔGprot.
Simulations for both legs of the thermodynamic cycle were started with a position
restrained 0.5 ns NVT equilibration followed by a 1 ns NPT equilibration. The
production runs were performed for 15 ns per window in case of the solvation free
energy calculations and for 45 ns per window for the protein–ligand complex
simulations. Each ΔGsolv and ΔGprot calculation was repeated three times. The
exchange frequency between replicas for the HREX FEP followed closely the
protocol by Aldeghi et al.:7 swaps were attempted every 1000 steps by performing
3 × 106 exchanges at each interval.

Non-equilibrium TI. In the non-equilibrium TI calculations, we tried to closely
match the overall sampling time invested in the FEP protocols per ΔG estimate.
Each solvation and protein–ligand coupling free energy calculation consisted of an
equilibrium and non-equilibrium simulation parts. For the BRD4(1) specificity
dataset, equilibrium simulations consisted of a 0.5 ns simulation in the NVT
ensemble, followed by a 10 ns production simulation in the NPT ensemble for both
end states: ligand coupled and decoupled from the system. Subsequently,
96 snapshots were extracted from each equilibrium trajectory equidistantly (the
first 0.4 ns from the trajectories were discarded for equilibration), from which
0.5 ns non-equilibrium transitions were started and performed in both coupling
and decoupling directions. This procedure was repeated 9 times for the ligand
solvation part and 12 times for the protein–ligand coupling part. An exception is
Ligand 11, where 6 solvation and 8 protein–ligand coupling runs were performed
for each of the two poses to ensure equivalent sampling time to that invested in the
FEP approaches.

For the bromosporine selectivity dataset, we used longer equilibrium
simulations of 15 ns (the first 5 ns were discarded for equilibration) and 100 non-
equilibrium alchemical transitions of 0.5 ns each. Solvation free energy calculations
were repeated 20 times, while protein–ligand calculations were repeated 5 times for
each protein–bromosporine complex.

T4 lysozyme calculations used six independent repeats for the solvation and for
protein–ligand simulations. Ligand in water equilibrium runs were of 15 ns, while
protein–ligand runs were of 45 ns. In each case 5 ns were discarded for
equilibration. 100 and 400 non-equilibrium transitions of 0.5 ns each were
performed to calculate ΔGsolv and ΔGprot, respectively. For the protein–ligand
simulations, the ligand coupling runs were initialized with an apo structure of the
protein (pdb id 4w51), while the decoupling runs were started from respective holo
structure.

For all the studied cases, when calculating bias and ΔG deviation from
experiment over time, the ΔG estimates from the non-equilibrium TI were
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obtained by truncating the equilibrium transitions and using a fraction of
transitions.

Before performing the calculations described above, we studied the effect of
different non-equilibrium transition times for a subset of 7 ligands, part of the first
BRD4(1) specificity dataset. These calculations used equilibrium simulations of
20 ns, from which 50 snapshots were extracted after discarding the first 10 ns for
equilibration. The lengths of the alchemical transitions studied were of 0.1, 0.5, 1, 5,
and 10 ns for the calculation of ΔGsolv. For the calculation of ΔGprot, also 20 ns
transitions were tested. The binding ΔG estimate was calculated by considering
ΔGsolv and ΔGprot derived from non-equilibrium transition of equivalent length,
with the only exception of the longest (20 ns) transitions used to calculate ΔGprot,
which were combined with the results for ΔGsolv that used 10 ns transitions.

The overall simulated time invested in this study (for both equilibrium FEP and
non-equilibrium TI calculations) was of 149 μs. This amounts to ~36 CPU years on
an Intel Xeon 3.5 GHz CPU with one NVIDIA Quadro P600 GPU. In this study,
we aimed to keep the overall simulation time comparable between all approaches
investigated, i.e., the same compute time was invested for each of the methods. The
main differences in applying FEP, HREX FEP, and non-equilibrium TI methods
comes from the type of jobs needed for efficient simulations. For the FEP
calculations, simulation at each discrete window along the alchemical coordinate
can be performed on a separate node, thus all the jobs can be submitted to a cluster
without the need to consider any inter-connections between them. In contrast,
HREX FEP requires communication between replicas, which necessitates running
all HREX jobs at once on a large, single node or multiple nodes with fast
connections. The non-equilibrium TI method consists of two steps, which are
performed sequentially. First, equilibrium simulations at the physical end-states are
performed: this step, in terms of the compute resource selection, is similar to FEP.
Second, many short (e.g., 0.5 ns) non-equilibrium simulations are run. Here, the
non-equilibrium approach allows for more freedom in the choice of compute
nodes, allowing to achieve high throughput performance. In fact, these short
simulations can be run sequentially on a single fast node or be spread across the
whole cluster in an embarrassingly parallel manner.

MD simulation parameters. The simulation parameters used were identical to
those used in the earlier bromodomain studies, which are publicly available7,12. The
proteins were parameterized with the Amber99SB-ILDN force field46,47. The
General Amber force field (GAFF)48 was used to parameterize the ligands. The
systems were solvated with TIP3P49 water, consistently with the simulation setup
in refs. 7,12. Na+ and Cl− ions were added to neutralize the system. In the bro-
mosporine and T4 lysozyme simulations (Fig. 1b, c), ions were added to reach a salt
concentration of 150 mM, while for BRD4(1) no additional salt was added for
consistency with the setup used by Aldeghi et al.7. Production simulations were
performed at constant temperature (298.15 K) and pressure (1 bar), using Langevin
dynamics and the Parrinello–Rahman barostat50, respectively. The stochastic
dynamics integrator with a friction constant of 1 ps−1 and a 2 fs integration time
step was used. Bonds involving hydrogen atoms were constrained by means of the
LINCS algorithm51, with a bond restraining order of 6. The Particle Mesh Ewald
algorithm52,53 was used to treat long-range electrostatics with a spline order of 6, a
relative tolerance of 10−6, Fourier grid spacing of 0.1 nm, and a direct space cutoff
of 1.0 nm for the first dataset (Fig. 1a) and 1.2 nm for the second and third datasets
(Fig. 1b, c). For the simulations of the first dataset, the van der Waals interactions
were switched off between 0.9 and 1.0 nm, while a shifted van der Waals potential
was used for simulations of the second and third datasets with an interaction cutoff
of 1.2 nm. In the equilibrium FEP simulations, only van der Waals interactions
were soft-cored as proposed by Beutler et al.54. In the non-equilibrium TI calcu-
lations, both the electrostatic and van der Waals interactions were soft-cored as
described by Gapsys et al.55 for the bromodomain simulations and by Beutler
et al.54 for T4 lysozyme. All the equilibrium simulations were performed with
Gromacs56 2018. The non-equilibrium transitions with the modified soft-core
function were performed with Gromacs 4.6 (in these simulations we set the direct
space electrostatic cutoff to 1.2 nm for both datasets, for compatibility with the
neighbor list cutoff used in ref. 7).

For the set of simulations performed to study the effect of non-equilibrium
transition time, a slightly modified set of parameters was used. Namely, the
equations of motion were integrated with a smaller time step of 1 fs. The LINCS
bond restraining order was set to 12. A direct space electrostatic interaction cutoff
of 1.2 nm was used with a Fourier grid spacing of 0.12 nm. The van der Waals
interactions were switched off between 1.0 and 1.1 nm.

Free energy and uncertainty estimation. For the equilibrium FEP calculations,
free energy estimates and associated uncertainties were calculated using the mul-
tistate Bennet’s acceptance ratio (MBAR)15 estimator as implemented in pymbar
and the Alchemical Analysis tool57. For analysis, the first 10% of the simulations
was discarded as equilibration. For the MBAR estimates, we decided not to use a
sample decorrelation procedure41. This choice was made after noticing that per-
forming the time series analysis occasionally results in discarding a large portion of
the overall data leaving only a few points for analysis. This, in turn, may result in
estimates deviating significantly from the results of other methods, as well as from
the experimental measurement. Bypassing the time series analysis resolved the
issue of such outliers, yet the uncertainties of the individual estimates appear to be

under-estimated. We, therefore, also provide a more detailed analysis on the
uncertainty estimation.

For the non-equilibrium TI calculations, bi-directional free energy estimates
were calculated using a maximum likelihood estimator58 that is equivalent to the
Bennet’s acceptance ratio (BAR) as derived for the ensembles sampled at
equilibrium14. Uni-directional free energy estimates were calculated using
Jarzynski’s equality59. These analyses were carried out using the pmx60 tool.
Uncertainties were obtained via bootstrap.

Where multiple independent calculation repeats were performed, the standard
error for a ΔG estimate was calculated by incorporating both the estimator
uncertainty as well as the variance of the repeated calculations. For each repeat, the
distribution of ΔG values was assumed to be normal, with mean equal to ΔG
estimate and standard deviation equal to the bootstrapped uncertainty. The final
uncertainty estimate considering all repeats was calculated as a standard error
across all the normal distributions.

The agreement between the calculations and experiment was quantified by the
average unsigned error (AUE), the root mean squared error (RMSE), and the
Pearson, Kendall, and Spearman correlations. The error bars for these measures
were obtained by bootstrap, by taking into account both the variation in the
dataset, as well as the uncertainties associated with the individual ΔG estimates.
This was achieved by a combination of parametric and non-parametric bootstrap
in which we both resampled ΔG values as well as their associated uncertainty. At
each bootstrap iteration, samples from the dataset were selected at random with
replacement, where for each sample a ΔG value was drawn from a normal
distribution according to its estimated mean and standard error. Throughout the
work we report uncertainties as: estimator ± standard error. In some cases this
representation violates the bounds of the estimator, as e.g. a correlation larger than
1. We note that this is merely a consequence of the uncertainty representation,
none of the actual values violate such bounds.

To calculate ΔG estimates using a fraction of the production sampling time (ΔG
plots against sampling time), for the non-equilibrium TI calculations we considered
shorter equilibrium simulations, with the number of alchemical transitions being
reduced accordingly, while retaining a transition time of 0.5 ns. In case of FEP (and
HREX FEP for T4 lysozyme simulations), simulation time was truncated
accordingly to evaluate ΔG over time. When depicting the ΔG (or its AUE) against
time (e.g., in Figs. 3, 5, 7), the x-axis denotes the total sampling time, of which the
first fraction is used for equilibration as described for each protocol individually.
This means that the shortest simulation time considered in each of these figures is
not zero as it represents the total amount of simulated time used for equilibration
before the production runs.

Data availability
The free energy estimates with uncertainties reported in Figs. 2–8 are provided as
supporting material (Supplementary Data 1) together with this publication.

Code availability
The simulations were performed with Gromacs (LGPL-2.1 license): https://gitlab.com/
gromacs. Analysis of the non-equilibrium free energy calculation data was performed
with pmx (LGPL-3.0 license): https://github.com/deGrootLab/pmx. Analysis of the
equilibrium free energy calculation data was performed with Alchemical Analysis (MIT
License): https://github.com/MobleyLab/alchemical-analysis.
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