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Abstract

Proteins frequently accomplish their biological function by collective atomic motions. Yet the identification of collective
motions related to a specific protein function from, e.g., a molecular dynamics trajectory is often non-trivial. Here, we propose
a novel technique termed ‘‘functional mode analysis’’ that aims to detect the collective motion that is directly related to a
particular protein function. Based on an ensemble of structures, together with an arbitrary ‘‘functional quantity’’ that quantifies
the functional state of the protein, the technique detects the collective motion that is maximally correlated to the functional
quantity. The functional quantity could, e.g., correspond to a geometric, electrostatic, or chemical observable, or any other
variable that is relevant to the function of the protein. In addition, the motion that displays the largest likelihood to induce a
substantial change in the functional quantity is estimated from the given protein ensemble. Two different correlation
measures are applied: first, the Pearson correlation coefficient that measures linear correlation only; and second, the mutual
information that can assess any kind of interdependence. Detecting the maximally correlated motion allows one to derive a
model for the functional state in terms of a single collective coordinate. The new approach is illustrated using a number of
biomolecules, including a polyalanine-helix, T4 lysozyme, Trp-cage, and leucine-binding protein.
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Introduction

Collective motions are essential for biological functions in proteins

[1]. They are involved in numerous biological processes including

enzyme catalysis, channel gating, allosteric interactions, signal

transduction, and recognition dynamics. The observed motions are

as diverse as hinge, shear, or rotational motions of entire subunits,

opening motions of molecular lids, loop motions, partial unfolding,

or subtle rearrangements of amino acid side chains [2]. Under-

standing the functional mechanisms of such proteins requires both to

identify the protein’s collective motions and to relate the observed

motions to the protein’s biological function.

Diverse experimental methods have been applied to elucidate

collective motions including nuclear magnetic resonance (NMR)

[3,4], X-ray crystallography [5], as well as single-molecule

fluorescence [6] or electron-transfer measurements [7]. Comple-

mentary to experiments, molecular dynamics (MD) simulations are

a widely used techniques to investigate collective motions in

proteins [8]. A state-of-the-art approach to elucidate collective

motions from the protein dynamics is principal component

analysis (PCA) [9–12]. PCA is commonly used to extract the

collective motions with the largest contribution to the variance of

the atomic fluctuations. Alternatively, normal mode analysis

(NMA) has been extensively used to identify low-frequency

collective modes [13–16]. Such modes are expected to correspond

to large atomic displacements and are therefore assumed to be

important to protein function. In addition, elastic network models

are an established approach to assess motions intrinsic to the

protein structure [17].

Established methods such as PCA and NMA elucidate large-

scale and low-frequency modes, respectively, but do not

necessarily yield collective motions directly related to protein

function. Here, we propose a novel analysis technique termed

‘functional mode analysis’ (FMA) that aims to elucidate collective

motions directly related to a specific protein function. As input, the

technique requires a set of protein structures, together with a

‘functional quantity’ that can be expressed as a single number for

each input structure. The structures typically derive from an MD

simulation, but a (large) set of X-ray or NMR structures is equally

well suited. The chosen ‘functional quantity’ can be quite general

and could correspond to some geometric, electrostatic, or chemical

observable, or any other variable that might be relevant to the

function of the protein. Typical examples for the functional

quantity could include the openness of a channel, active site

geometry, or cleft solvent accessibility. Given that input, the

technique seeks the collective protein motion that is maximally

related to the functional quantity. In other words, the technique

aims to explain variations in the functional quantity in terms of

collective motions.

When relating a functional quantity (from now on termed f ) to

collective motions, two quite different motions might be of interest.

First, the motion that displays the largest correlation to f . This

motion is unaffected by the energy landscape of the protein, and it

will be referred to as ‘maximally correlated motion’ (MCM). It is

particularly interesting for quantities f of which the dependence

on the protein structure is complex and therefore unclear. An

example for such a complex quantity would be the R-value in X-

ray refinement. Second, the physical motion that actually

accomplishes substantial deviations in f , in accordance with the

protein’s energy landscape, is frequently of interest. Because many

different motions might affect f , we use the input structure

ensemble to estimate the most probable collective motion that
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accomplishes a substantial change in f . That motion will be

referred to as ensemble-weighted MCM (ewMCM). Depending on

the question addressed, the MCM or the ewMCM (or both) can

provide insight into the relation between function and motion.

Therefore, both motions are considered by the proposed

framework.

This paper is organized as follows. First, we describe the analysis

technique. Subsequently, four examples for FMA are presented,

applying the approach to a polyalanine helix, T4 lysozyme, Trp-

cage, and leucine-binding protein. The examples illustrate the use

of FMA in detecting functionally relevant collective motions.

Methods

Theory and Concepts
Let us consider the simulation trajectory x(t)[R3N of the protein

atoms or of a subset of the protein atoms such as the backbone or

the heavy atoms. x(t) denotes the 3N cartesian coordinates of N
atoms. The coordinates are known at Nt times, i.e., t[ft1, . . . ,tNt

g.
For each time t, an arbitrary scalar functional quantity f (t) is given

which can be computed from the protein coordinates and/or

velocities. Note that for the following presentation of FMA, the

time t is only an index to label the input structures x(t) and should

not imply that the structures must correspond to a time series.

Instead, the structures x(t) may equally well derive from, e.g.,

Monte Carlo sampling or from a large ensemble of experimental

structures.

Maximally correlated motion (MCM). We seek a

normalized collective vector a[R3N of protein atoms such that

the motion along a is maximally correlated to the change in the

functional quantity f (t). Therefore, the motion along a is referred

to as ‘maximally correlated motion’ (MCM). The MCM as a

function of time t is given by the projection

pa(t)~½x(t){SxT�:a, ð1Þ

where S � � �T denotes the average over all times t.

In the present study, two measures are applied to quantify the

correlation between f and pa. First, Pearson’s correlation

coefficient defined by

R~
cov(f ,pa)

sf sa

, ð2Þ

where cov(f ,pa) denotes the covariance between f (t) and pa(t),
and sf and sa denote the standard deviations of f (t) and pa(t),

respectively. The Pearson coefficient measures only linear

correlation. Second, the mutual information (MI) between f and

pa given by [18]

I(f ,pa)~

ð ð
P(f ’,p’a)log

P(f ’,p’a)

P1(f ’)P2(p’a)

� �
df ’dp’a: ð3Þ

Here, P(f ’,p’a) denotes the joint probability distribution of f and

pa, and P1(f ’) and P2(p’a) denote the marginal probability

distributions of f and pa, respectively. The MI measures any kind

of interdependence between f and pa, including non-linear and

higher order correlation. Note that if (and only if) f and pa are

independent, P(f ’,p’a)~P1(f ’)P2(p’a) holds, the logarithm in eq.

(3) vanishes, and the MI equals to zero. Hence, the MI can be

interpreted as the probability weighted deviation from the case of

f and pa being independent.

Reduction of dimensionality. Before optimizing a (via

maximization of R or of the MI), a reduction of the dimensionality

of the optimization problem is frequently required. Even when

restricting the analysis to a subset of the protein atoms (such as the

backbone), the long autocorrelations in protein dynamics may

otherwise lead to an overfitted collective vector a. A common

procedure to reduce the dimensionality of protein dynamics is

principal component analysis (PCA) [10]. PCA allows one to

determine a small set of collective vectors with the largest

contribution to the mean square fluctuations (MSF) of the atomic

coordinates.

For convenience and to clarify the nomenclature we briefly

sketch the PCA in the following. Given the 3N cartesian atomic

coordinates xi(t) (i~1, . . . ,3N), the elements of the covariance

matrix C of the atomic positions are given by

Cij~S(xi{SxiT)(xj{SxjT)T: ð4Þ

Before computing C, translation and rotation of the entire

biomolecule is removed by superimposing the simulation trajec-

tory onto a reference structure. Diagonalization of C yields a set of

3N orthonormal eigenvectors ei with corresponding eigenvalues

s2
i . The eigenvectors are typically ordered according to descending

eigenvalues and referred to as PCA vectors. The projection

pi(t)~½x(t){SxT�:ei is called ith principal component (PC) and

quantifies the position of the protein along the ith PCA vector.

The MSF of the atoms can be decomposed into contributions

from different principal components, S(x{SxT)2T~
X3N

i~1

var(pi)~
P3N

i~1 s2
i , where var( � � � ) denotes the variance. In

protein simulations the first 10–20 PCs (with the largest

eigenvalues) often account for a large fraction (80–90%) of the

atomic MSF, and higher PCs describe smaller motions such as

angle vibrations [10]. Hence, if large protein motions are expected

to dominate changes in the f (t), the first few PCA vectors are a

reasonable basis set to construct a.

We stress that PCA vectors are only one possible basis for a.

Other possibilities include normal modes or modes derived from

Author Summary

Proteins are flexible nanomachines that frequently accom-
plish their biological function by collective atomic motions.
Such motions may be characterized by hinge, shear, or
rotational motions of entire protein domains, loop
movements, or subtle rearrangements of amino acid side
chains. In many cases it is far from obvious how collective
motions are related to a particular biological task.
Therefore, we propose a novel technique termed ‘‘func-
tional mode analysis’’ that, based on an ensemble of
structures, aims to detect a collective motion that is
directly related to a particular protein function. From the
given set of protein structures, together with a ‘‘functional
quantity’’, the technique seeks the collective motion that is
maximally correlated to the functional quantity. The
chosen functional quantity can be quite general; typical
examples could include the openness of a channel, active
site geometry, or cleft solvent accessibility. Because the
proposed framework is highly general, we expect the
approach to be useful to a wide range of applications. To
illustrate the new technique, we apply functional mode
analysis to molecular dynamics trajectories of a polyala-
nine-helix, bacteriophage T4 lysozyme, Trp-cage, and
Leucine-binding protein.
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full correlation analysis [16,19]. For some quantities f (t) angles in

dihedral space or the cartesian coordinates may also provide a

useful coordinate system.

Maximization of the Pearson coefficient R. Assuming that

f is approximately a linear function of the PCs, the collective

vector a can be derived by maximizing the Pearson coefficient R
(eq. (2)). We construct a as a linear combination of the first d PCA

vectors, a~
Xd

i~1
aiei. Here, coefficients ai denote the

coordinates of a with respect to the basis set feig.
As shown in the supporting Text S1, a maximum in the absolute

value of R can be found by numerically solving the coupled linear

set of equations

Xd

i~1

aicov(pi,p‘)~cov(f ,p‘), ‘~1, . . . ,d: ð5Þ

For the present study, a~(a1, . . . ,ad ) was normalized after

computation via eqs. (5). Note that for the maximization of R,

the normalization of a is not strictly necessary because R is

invariant to the norm of a.

It is instructive to note that maximizing R provides a

quantitative model for f as a function of the PCs pi(t). A model

for f allows one to predict f from a given protein structure, and, in

turn, propose new structures that generate a particular value of f
(i.e., a specific functional state). Let

mf (t)~Sf Tz
Xd

i~1

bi½pi(t){SpiT� ð6Þ

denote the model for f (t). The d parameters bi are fitted to the

data f (t) by minimizing the mean square deviation (MSD)

between f (t) and its model mf (t), i.e., S½f {mf �2T?min. In

multivariate regression analysis this approach is referred to as

‘ordinary least square estimation’ [20]. The minimum of

S½f {mf �2T with respect to the parameters bi is found by solving

the coupled set of linear equations

Xd

i~1

bicov(pi,p‘)~cov(f ,p‘), ‘~1, . . . ,d, ð7Þ

as shown in Text S1. By comparison to eqs. (5), the bi are identical

to ai with the exception that the ai may be scaled by an arbitrary

factor without changing R. Hence, mf (t) can be rewritten in terms

of pa via mf (t)~Sf Tzn (pa(t){SpaT), where n is a constant.

Maximization of the mutual information (MI). If f
depends non-linearly on atomic positions, the Pearson coefficient

might be an insufficient measure to detect correlation between f
and pa. In such cases, we apply the MI as correlation measure

because it can detect any kind of interdependence. Optimizing the

MI is computationally more demanding as compared to the

optimization of R. The methodological details for the MI

optimization are described in the section ‘Iterative optimization

of the mutual information’.

Maximizing the MI yields the collective vector pa that, by

construction, provides as much information on f as possible.

Because the functional relation between pa and f can be arbitrary,

optimizing the MI does not directly provide a quantitative model

for f (as in the case of optimizing R, compare previous paragraph).

A natural approach to nevertheless yield a model for f is to fit a

general curve g(pa) (such as a spline [21] or a polynomial) to the

pa{f data points. Given a protein structure x, this model

allows one to predict the quantity f from the structure via

f&g((x{SxT):a).
Contributions of principal components to f (t). PCA

modes have frequently been shown to be important to protein

function [8,10,22]. However, a functionally important motion may

be spread over a number of PCA modes. To understand the

protein’s function, it is therefore instructive to quantify the

influence of different PCA modes on the functional quantity

f (t), in particular if the PCA modes are related to intuitive motions

such as hinge-bending or torsional modes.

Let us first consider the case of a linear model for f (eq. (6)).

Using the linear model for mf (t) as an approximation for f (t) (eq.

(6)), the variance of f (t) can be approximated by

var(f )&var(mf )~
Xd

i~1

b2
i var(pi)zbi

X
j=i

bjcov(pi,pj)

" #
: ð8Þ

The expression in square brackets is the contribution of the

ith PC to the variance of f (t). When using the same set of

simulation frames for the PCA and for constructing the model

mf (t), all cov(pi,pj) vanish for i=j and eq. (8) simplifies to

var(f )&
Xd

i~1
b2

i var(pi).

In case of a non-linear dependence between f and pa, var(f )
cannot be decomposed into contributions from different PCs.

Instead, the variance of pa can be written as the right hand side of

eq. (8), except for the bi being substituted by the ai. This way,

fluctuations of the motion correlated to f (but not the variance in f
itself) can be decomposed into contributions from different PCs.

Ensemble-weighted maximally correlated motion

contributing to f . The MCM along the collective vector a
displays the largest correlation to f (t) as measured from R or from

the MI. However, due to the protein’s energy landscape, the

motion parallel to a may be severely restricted. This fact is

schematically illustrated in Fig. 1. Let us assume that the

functional quantity f increases to the right in Fig. 1. Then,

irrespective of the energy landscape (thin lines in Fig. 1A–C), the

MCM is parallel to the direction of increasing f . However, if the

energy landscape restricts the motion parallel to the MCM

(Fig. 1B), a displacement along the MCM will actually occur

through a motion which is non-parallel to the MCM, but which is

in accordance to the energy landscape. Such motions would have

a substantial projection on the MCM, but are not identical to the

MCM.

In addition to the MCM, we therefore seek the most probable

collective motion that accomplishes a specific displacement along

the MCM. We apply the input structure ensemble to estimate the

most probable motion, and refer to that motion as ‘ensemble-

weighted maximally correlated motion’ (ewMCM). The ewMCM is

shown as black arrows in Fig. 1 for three different hypothetical

energy landscapes. Note that the ewMCM is pointing in the

direction that accomplishes a displacement along the MCM with a

motion of smallest energy increase (i.e., with the largest probability).

If the energy landscape does not favor any direction (Fig. 1A), the

ewMCM is parallel to the MCM. In contrast, if the energy

landscape highly favors motions in one direction over motions in

another direction (Fig. 1B), the ewMCM may strongly deviate from

the MCM. An intermediate situation is shown in Fig. 1C. It should

be emphasized that the ewMCM is the collective motion in the given

input ensemble which accomplishes the displacement along the MCM.

In case of limited sampling, a second input ensemble may

accomplish a displacement along the MCM through a different

ewMCM, rendering the ewMCM highly dependent on the input

Detection of Functional Modes in Protein Dynamics
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ensemble. This characteristic of the ewMCM motivates the term

‘ensemble-weighted’.

Let us assume that the MCM a~
Xd

i~1
aiei has been

optimized such that pa(t)~
Xd

i~1
aipi(t) is maximally correlated

to f (t), as measured from R or from the MI (see above). Thus, the

set of ai are fixed in the following, and pa quantifies the functional

state of the protein. In the input ensemble, the collective variable

pa varies between its minimum pmin
a ~min(pa(t),t[ft1, . . . ,tNt

g)
and its maximum pmax

a ~max(pa(t),t[ft1, . . . ,tNt
g). To define the

ewMCM, we choose an arbitrary but fixed value for pa, denoted

p�a [ ½pmin
a ,pmax

a �, between its extremes pmin
a and pmax

a . As ewMCM

we consider the most probable collective displacement v� (from the

average structure SxT) that generates the functional state p�a,

P(v�)?max, v�:a~p�a: ð9Þ

Here, P(v�) denotes the probability of the collective atomic

displacement v�. In the following we restrict the ewMCM v� to the

subspace spanned by the first d PCA vectors feig. Then, the

ewMCM can be expressed as v�~
Xd

i~1
p�i ei and the condition

(9) can be rewritten as

P(p�1, . . . ,p�d )?max,
Xd

i~1
aip
�
i ~p�a, ð10Þ

where P(p�1, . . . ,p�d ) denotes the probability for a particular set of

PCs p�1, . . . ,p�d .

The p�i were estimated as follows. First, to simplify the

nomenclature, let assume the mutual covariances between the

PCs to equal zero. Then, P(p1, . . . ,pd ) can be approximated via

P(p1, . . . ,pd )&P
d

i~1
Pi(pi)&N{1

p exp {1=2
Xd

i~1
p2

i =s2
i

� �
, ð11Þ

where Pi denotes the marginal probability distribution of the ith

PC, and Np is a normalization constant. Here, the pi were assumed

to be mutually independent and normally distributed. (If the PCs

were constructed from a different set of frames than the frames used

for the FMA, the covariances between different PCs may not vanish,

rendering the assumption P(p1, . . . ,pd )&P
d

i~1 Pi(pi) a poor

approximation. In that case we switch to new coordinates

(q1, . . . ,qd )~K(p1, . . . ,pd ) with zero mutual covariances. Here,

the transformation matrix K is computed from a PCA on the

p1, . . . ,pd .) Using the approximation in eq. (11), the maximization

of P(p�1, . . . ,p�d ) with the constraint
Xd

i~1
aip
�
i ~p�a is straight-

forward using Lagrange multipliers. The calculation yields

p�i ~
ais

2
iPd

j~1

(ajsj)
2

p�a: ð12Þ

Note that the components ai of the MCM are weighted by the

variance s2
i of pi of the given ensemble, further justifying the term

‘ensemble-weighted’. To visualize the ewMCM for the given

ensemble, successively increasing values for p�a can be chosen

between, e.g., pmin
a and pmax

a . For each value p�a, eq. (12) provides a

set of PCs p�i and, hence, a structure x~SxTz
Xd

i~1
p�i ei. The

structures can be depicted in common molecular visualization

software.

Cross-Validation
MD simulations of proteins can be subject to long autocorre-

lations. The maximization of R or MI can lead to overfitting if too

many free parameters ai are used in the optimization. It is

therefore essential to cross-validate the derived model for f (t) with

an independent set of simulation frames. A convenient approach

to cross-validate the optimization is to divide the simulation into

frames for model building and for cross-validation. Accordingly, R

or MI is optimized applying the model building set only, yielding a

correlation Rm between data and model. Subsequently, the

derived model is validated by predicting f (t) from the derived

model using the cross-validation set only, yielding a correlation Rc.

Note that in the present context the term ‘predict’ should not imply

any prediction into the future. Instead, the exact (or true) f (t) as

computed from all atomic coordinates is compared with f (t) as

computed from the model, making only use of the functional

collective coordinate pa(t). Hence, we apply the term ‘predict’ as

common in, e.g., the pattern recognition literature [23]. Using this

approach, overfitting is indicated by a substantially smaller Rc as

compared to Rm.

How many basis vectors d should be used to construct a? The

optimal number d will highly depend on the simulation system and

the observable f (t). The reasonable choice for d can be identified

by plotting Rm and Rc as a function of d. As long as no overfitting

occurs, Rc increases with d, indicating an improvement of the

Figure 1. On the difference between the maximally correlated motion (MCM) and the ensemble-weighted MCM (ewMCM)
contributing to the functional quantity f. (A–C) Irrespective of the energy landscape (thin lines), the MCM (along a) is parallel to the direction with
increasing f (here, to the right). In contrast, the ewMCM is highly dependent on the energy landscape. (A) If no direction is favored by the energy
landscape, the ewMCM is parallel to the MCM. (B) If one direction (PCA vector 1) is highly favored over another direction (PCA vector 2), a displacement
along the MCM is mainly accomplished through a motion along the PCA vector 1. Therefore, the ewMCM is nearly parallel to PCA vector 1 in this case. (C)
An intermediate situation between the extreme cases (A) and (B). In that case, both PCA vectors 1 and 2 contribute to the ewMCM.
doi:10.1371/journal.pcbi.1000480.g001
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model. As soon as Rc decreases with d or becomes substantially

smaller than Rm, the model is overfitted.

Iterative Optimization of the Mutual Information
The collective vector a~

Xd

i~1
aiei that yields the largest MI

between f and pa must be optimized iteratively. The optimization

procedure for the MI was implemented as follows. The initial

guess a0 for a is generated randomly, or corresponding to the

optimized Pearson coefficient (eqs. (5)). Subsequently, I(f ,pa) is

optimized via a sequence of rotations a‘z1~R‘a‘ which effect

only three coefficients ai‘ , aj‘ , and ak‘ . Hence,

(a1, . . . ,ai‘z1
, . . . ,aj‘z1

, . . . ,ak‘z1
, . . . ,ad )

~R‘(a1, . . . ,ai‘ , . . . ,aj‘ , . . . ,ak‘ , . . . ,ad )
ð13Þ

where ai‘z1
, aj‘z1

, ak‘z1
are derived from the ai‘ , aj‘ , ak‘ by a three-

dimensional (3D) rotation R3D
‘ ,

(ai‘z1
,aj‘z1

,ak‘z1
)~R3D

‘ (ai‘ ,aj‘ ,ak‘ ): ð14Þ

For each optimization step, the i‘, j‘, and k‘ are randomly chosen

from the d dimensions.

Each 3D rotation matrix R3D
‘ is chosen such that it optimizes

the MI in the i‘{j‘{k‘ subspace. To optimize R3D
‘ , approxi-

mately np~150 points are uniformly distributed on a unit sphere,

each point corresponding to a possible 3D rotation with rotation

angles wi and hi (i~1, . . . ,np). The MI Ii(wi,hi) is computed for

each of the np rotations. Subsequently, a set of spherical harmonics

(up to order 5) is fitted to the np discrete Ii(wi,hi), yielding a

continuous and smoothed estimate of the MI as a function of the

rotation angles w and h. The fit was implemented as a least-square

fit using singular value decomposition. Eventually, the function

I(w,h) is optimized by Powell’s method [24], yielding the best 3D

rotation matrix R3D
‘ of the ‘th optimization step. The 3D rotations

are repeated in different i‘{j‘{k‘ subspaces until convergence.

The MI I(f ,pa) is estimated from the discrete data sets by a

binning procedure. Accordingly, the probability distributions

P1(f ’) and P2(p’a) are approximated by counting the occupancies

nf ,i and np,i of f (t) and pa(t), respectively, in bins i~1, . . . ,Nb. For

the present study, the number of bins Nb was found to have a

minor effect on the results. A reasonable choice was Nb~50.

Likewise, P(f ’,p’a) are approximated by a two-dimensional (2D)

binning, yielding the 2D occupancy nfp,ij . The MI is estimated via

I(f ,pa)&
XNb

i,j~1

nfp,ij=Ntlog
nfp,ij

nf ,i np,i=Nt

� �
Df Dpa, ð15Þ

where Df and Dpa denote the bin widths of nf ,i and np,i,

respectively. Note that the technique proposed here does not

require an estimate of the absolute MI, but only of the relative

change in MI due to a rotation R3D
‘ . Sophisticated and com-

putationally demanding methods such as kernel density estimates

are therefore unnecessary.

Simulation Setup
The Fs21 helix (originally introduced by Lockhart et al. [25],

Sequence Ace-A5[AAARA]3A-NH2) was modeled with PyMol

[26]. The structures of T4 lysozyme (T4L) and leucine-binding

protein (LBP) were taken from the protein data bank (PDB codes

256L [27] and 1USG [28], respectively). Likewise, the first

structure in the NMR ensemble derived by Neidigh et al. (PDB

code 1L2Y [29]) was used as initial structure for the simulations of

Trp-cage. The Fs21, T4L, Trp-cage, and LBP structures were

placed into dodecahedral simulation boxes and solvated with

8828, 8479, 3042, and 17581 explicit water molecules, respec-

tively. All simulation systems were neutralized by adding chloride

ions. In addition, 150 mM sodium chloride was added to the Trp-

cage and LBP systems.

The Fs21 helix and LBP were simulated with the AMBER03

[30] force field and the TIP3P water model was applied [31]. Ion

parameters were taken from Smith et al. [32]. Trp-Cage and T4

lysozyme were simulated with the OPLS all-atom force field [33]

and the TIP4P water model [34]. All simulations were carried out

using the GROMACS simulation software [35,36]. Electrostatic

interactions were calculated at every step with the particle-mesh

Ewald method [37,38]. Short-range repulsive and attractive

dispersion interactions were described by a Lennard-Jones

potential, which was cut off at 1.0 nm (0.8 nm for the AMBER03

simulation). The SETTLE [39] algorithm was used to constrain

bond lengths and angles of water molecules, and LINCS [40]

was used to constrain the peptide bond lengths, allowing a time

step of 2 fs.

The temperature in the Fs21 and T4L simulations was kept

constant by weakly (t~0:1 ps) coupling the system to a

temperature bath [41] of 300 K. Likewise, the pressure was kept

constant by weakly coupling the system to a pressure bath of 1bar

with a coupling constant t of 1 ps. The LBP and Trp-cage systems

were coupled to a Nosé-Hoover thermostat [42,43] (t~2 ps) at

300 K and 400 K (to trigger unfolding), respectively, and the

pressure was kept at 1 bar using the Parrinello-Rahman pressure

coupling scheme [44] (t~5 ps).

The Fs21 helix was simulated for 250 ns and the structure was

written to the hard disk every picosecond. During the simulation

the helix partially unfolded and refolded for a number of times.

Because we chose to consider collective motions of an intact helix

only, the secondary structure was determined for every frame with

DSSP [45] and only frames with a complete helix were used for

further analysis. Approximately 53.000 such frames were found

which were combined into one ‘trajectory’ of 53 ns with time step

1 ps. The lysozyme simulation system was simulated for 460 ns,

and the LBP system for 100 ns. The Trp-cage protein was

simulated 8 times for 40 ns with different initial velocities. The

volume of the catalytic cleft of T4L was estimated as explained and

illustrated in supporting Figure S1.

Results

In the following we apply FMA on four biological examples,

and demonstrate how quite different functional quantities f can be

related to collective protein motions. In the first three examples of

increasing complexity (Fs21 helix, T4 lysozyme, and Trp-cage) the

Pearson coefficient turned out to be sufficient to detect correlations

between the respective functional quantity and collective motions.

With the final example (leucine-binding protein) we demonstrate

how the MI can elucidate correlation in cases where the Pearson

coefficient fails.

As a first and trivial example we analyze collective motions

related to the end-to-end distance of the Fs21 helix. The example

(including figures) is presented in supporting Text S2 and

illustrates the application of FMA in some detail. Because the

PCA vectors correspond to the harmonic modes of a simple helical

spring, the decomposition of the end-to-end distance into

contributions from different PCA modes is particularly instructive

in this example.
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Collective Motions of T4 Lysozyme Involved in Enzymatic
Activity

Domain motions of hen lysozyme have been proposed more

than 30 years ago [46,47]. Likewise, domain motions in T4

lysozyme (T4L) have been studied intensively by X-ray crystal-

lography [27,48–50], site-directed spin labeling [51], as well as by

theoretical approaches such as normal mode analysis, MD and

PCA [47,52–54].

Here we demonstrate how FMA can be applied to determine

the collective motions which are putatively involved in the

enzymatic activity of T4L. Two functional quantities f (t) related

to the enzymatic activity are considered for the analysis. (i) The

volume of the catalytic cleft Vcleft, highlighted as red surface in

Fig. 2A, and (ii) the distance dED between the carboxyl groups of

the catalytic residues Asp20 and Glu11 (Fig. 2B). The volume

Vcleft is biologically significant because opening and closure of the

cleft is expected to be involved in substrate binding and product

release. The distance dED is a direct measure of the geometry of

the catalytic site. According to the textbook mechanism proposed

by Phillips [55], Glu11 protonates the glycosidic oxygen while

Asp20 stabilizes the produced oxocarbenium ion intermediate.

Hence, the carboxyl groups of Glu11 and Asp20 must simulta-

neously arrange closely to the glycosidic bond. dED is therefore an

easily assessable observable that probes enzymatically active

configurations. The distance between the carboxyl groups was

measured as the distance between the Cd atom of Glu11 and the

Cc atom of Asp20.

In the following, the results of the FMA of Vcleft and dED are

presented in a relatively compact fashion. For a more detailed

presentation of FMA we refer to the illustrative a-helix example in

supporting Text S2. In a first step, the basis set feig was derived by

a PCA on the backbone atoms, using the 460-ns T4L simulation.

The first 20 PCA vectors were used as basis set for the FMA. The

motions along the first three PCA vectors are shown in Fig. 2C.

The first PCA vector corresponds to the well-studied hinge-

bending mode of T4L [46,51], and the second to a twisting mode,

mainly characterized by a rotation of the smaller (N-terminal)

lysozyme domain. The third PCA vector corresponds to the

torsion of the N-terminal domain with respect to the C-terminal

domain.

Figure 2. Functional mode analysis of catalytic cleft volume Vcleft and Glu11-Asp20 distance dED of T4 lysozyme (T4L). (A/B) T4L in
cartoon and surface representation. The catalytic cleft is shown as red surface (A), and Glu11 and Asp20 are depicted in ball-and-stick representation
(B). (C) The motions along the first three PCA vectors. (D) Vcleft , and (F), dED versus the simulation time (black and blue curves, respectively). The first
180 ns (250 ns for dED) were used as model building sets (red background), the remaining simulation frames as cross-validation sets (green
background). (E/G) Scatter plots of the data versus the model using the cross-validation sets only. (H) Correlations Rm and Rc for Vcleft (black curves)
and dED (blue curves), presented as a function of the number of principal components d used during the optimization.
doi:10.1371/journal.pcbi.1000480.g002
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In Figures. 2D and 2F, Vcleft and dED are plotted as a function

of simulation time, respectively. The first 180 ns (250 ns for dED)

were applied as model building sets (red background), the

remaining frames as cross-validation sets (green background).

For both Vcleft and dED, the respective collective vector a was

optimized by maximizing R, yielding linear models for Vcleft and

dED. The models are validated in figs. 2E and 2G, showing scatter

plots between simulation data and models using the respective

cross-validation sets only. Strong cross-validated correlation

(Rc~0:95 and 0.90, respectively) between model and data was

found, confirming the validity of the models. (The corresponding

scatter plots using the model building sets are presented in Figure

S3.) Note that side chain fluctuations of Glu11 and Asp20 cannot

be modeled from backbone PCA modes. Yet the derived model for

dED favorably correlates with the data (Rc~0:90), indicating that

side chain fluctuations have only a minor effect on dED. Figure 2H

shows the Rc values for Vcleft and dED as black and blue curves,

respectively, as a function of the number of PCA vectors d used in

the FMA. Apparently, the first PC already provides a good model

for Vcleft (Rc~0:89). In contrast, at least 15 PCs are required to

construct a good model (Rcw0:85) for dED.

The convergence of FMA of Vcleft with the number of frames in

the model building set is analyzed in Fig. 3. The figure plots Rc

and Rm between the Vcleft data and Vcleft model as a function of

the simulation time in the model building set. All remaining frames

of the 460-ns trajectory were applied for cross validation.

Remarkably, using only 10 ns for model building yields a

reasonable model (Rcw0:85) for the remaining frames. In

contrast, using less than 0.5 ns for model building yields a highly

overfitted model, as visible from the large Rm as compared to Rc.

The related analysis for the FMA of dED is presented in Fig. S2B.

Figure 4 presents the collective vectors related to Vcleft and dED, as

well as the contributions of different PCs to Vcleft and dED. The

results for Vcleft are presented as black bars and curves, the results for

dED in blue. The coefficients ai of a (or bi of the linear model, eq. (6)),

are shown in Fig. 4A. Note that bi quantifies the effect of the ith PC

on Vcleft (or dED) per nanometer displacement in PCA space. Because the

variance of the PCs rapidly decay with increasing PC index i
(Fig. 4B), only the first PCs substantially contribute to the variances of

Vcleft and dED (Fig. 4C). Remarkably, the first PC almost completely

accounts for var(Vcleft), whereas the second PC accounts for

var(dED). Figure 4D presents the cumulative contributions of the

PCs to var(Vcleft) and var(dED) as derived from the respective

models as solid curves, and the variances of var(Vcleft) and var(dED)
as dashed curves. The plot confirms that the models indeed account

for a large fraction the variances of Vcleft and dED, respectively.

Which are the ewMCMs contributing to Vcleft and dED?

Applying eq. (12) shows that the ewMCMs contributing to Vcleft

and dED are highly related to PCA vectors 1 and 2, respectively, a

finding in agreement to Fig. 4C. For the illustration of these

motions we therefore refer to the PCA vectors depicted in Fig. 2C.

In addition, the MCM and the ewMCM for both Vcleft and dED

are shown in supporting videos S1 and S2.

Taken together, the FMA provides a comprehensive picture of

the collective motions involved in the catalytic activity of T4L. The

hinge-bending mode (Fig. 2C) dominates closing and opening of

the catalytic cleft, presumably facilitating substrate binding and

release. Surprisingly, this mode leaves the active site geometry

virtually unaffected. In contrast, the twisting mode dominates the

distance dED between the carboxyl groups of Glu11 and Asp20.

Hence, a major collective rotation of the N-terminal domain with

respect to the C-terminal domain may be required to position

Glu11 and Asp20 into an enzymatically active configuration.

Initial Unfolding of Trp-Cage
Trp-cage is a 20-residue miniprotein designed by Neidigh et al.

[29]. With a folding time of 4 ms [56] Trp-cage is the fastest folding

Figure 3. Convergence of FMA of the lysozyme cleft volume
Vcleft. Rm (gray) and Rc (black curve) as a function of simulation time in
the model building set (MBS). For each data point in the figure, all
remaining frames from the 460-ns trajectory were used as cross
validation set, and the first 20 PCA vectors were applied as the basis set
to construct a. The inset displays the simulation time in the MBS is in a
detailed scale. Applying approx. 10 ns of simulation as MBS is sufficient
to yield a reasonable model (Rcw0:85) for the remining frames.
Applying less than 0.5 ns as MBS yields an highly overfitted model.
doi:10.1371/journal.pcbi.1000480.g003

Figure 4. Collective vector ‘a’ related to the lysozyme cleft
volume Vcleft (black) and to the distance dED between Glu11 and
Asp20 (blue). (A) components ai of a with respect to the PCA vectors ei .
(B) Variances s2

i of the principal components (PCs), (C) contribution of the
ith PC to the variance of the model, and (D) the cumulative contribution
of principal component i to the variance of the model. The dashed lines
indicates the variances of Vcleft and dED during the simulation.
doi:10.1371/journal.pcbi.1000480.g004
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protein currently known. Trp-cage is characterized by a central

tryptophan side chain (Trp6) which is surrounded by an a-helix
(residues 2–8), a 310-helix (residues 11–14), and a C-terminal

polyproline helix (Fig. 5A). Here we use Trp-cage as a model

system to demonstrate how FMA can be applied to study the

structural determinants underlying the initial unfolding process of

a protein. To this end, the hydrophobic solvent-accessible surface

area (HSAS) is used to quantify the state of unfolding.

Compared to the distances and volumes considered so far as

functional quantities f (t), explaining the HSAS by single collective

mode is challenging. The HSAS is subject to strong noise and is a

non-linear function of the atom coordinates. Only the linear parts

of the dependence of the HSAS on the PCs is expected to be

successfully captured by the linear model of eq. (6). The non-linear

dependence on the PCs (that would have to be described as cross

terms of the PCs) will appear as a noisy deviation from the model.

We use FMA to determine the collective motions related to the

change in the HSAS, and hence, to the initial unfolding of Trp-

cage. Three questions are addressed: (i) To which extent can a

model based on a single collective motion explain a highly non-

linear quantity such as the HSAS? (ii) Which collective motions

increase the HSAS and, hence, represent the initial unfolding of

Trp-cage? And (iii), can a model derived only from fluctuations in

the folded state predict the HSAS during an unfolding event? To

observe multiple unfolding events, eight 40-ns simulations were

performed at a temperature of 400 K. The HSAS during the eight

simulations is shown in Fig. 5B. In six of the eight simulations, the

Trp-cage unfolded after simulation times between 10 and 27.5 ns

(blue background in Fig. 5B). In the other two simulations the Trp-

cage remained folded for the complete simulation time. From the

eight simulations, all frames of the folded Trp-cage (yellow

background in Fig. 5B) were combined into one ‘folded trajectory’

of 183.3 ns (916503 frames).

The HSAS of the ‘folded trajectory’ is plotted in Fig. 5C. The

first 100 ns were applied as model building set in the FMA (red

background), the remaining 83.3 ns as cross-validation set (green

background). The basis set for the FMA was taken from a PCA of

all heavy atoms (after a least-square fit of the backbone atoms onto

the 1L2Y structure). The first 40 PCA vectors were used as basis

set. The PCA vectors are not visualized because they do not

correspond to easily interpretable motions. From the model

building set, a linear model for the HSAS was derived using eqs.

(7), and the model was validated using the cross-validation set

(Fig. 5D). The correlation between data and model is substantially

weaker (Rc~0:62, Rm~0:70, see Fig. S3D) than in the previous

examples. As expected, the HSAS in the folded state is only partially

captured by the linear model. To reach a similar model quality as

in the previous examples, additional non-linear cross terms of the

PCs would have to be included into the model. Without such

additional terms, the deviation from the linear model appears as

noise. Analysis of the difference between data and model shows

that the noise is normally distributed around zero with a standard

deviation of 0.36 nm2 (not shown).

To avoid overfitting, Rm and Rc are plotted as a function of the

number of PCA vectors d used as basis set (Fig. 5E). Both Rm and

Rc increase up to d~40, corresponding to an improvement of the

Figure 5. Functional mode analysis of the hydrophobic
solvent-accessible surface (HSAS) of Trp-cage in the folded
state. (A) Trp-cage protein in the folded state, shown in cartoon and
surface representation. The HSAS is shown as orange surface, the
hydrophilic SAS as blue surface. (B) HSAS during 8 independent
simulations (sim 1-8). HSAS (black curves), and to guide the eye, the
HSAS smoothed by a moving average (red curves). In simulation frames
highlighted by a yellow background, Trp-cage was considered as
folded. The initial unfolding events are highlighted by a blue

background. (C) HSAS versus simulation time (black curve) combined
from all folded states of the 8 Trp-cage simulations (B). The first 100 ns
were used as model building set (red background), the remaining
83.3 ns as cross-validation set (green background). (D) Scatter plot of
the data versus the model using the cross-validation set. (E) Correlations
Rm and Rc of the model building and cross-validation sets, respectively,
versus the number of PCA vectors d used during the optimization.
doi:10.1371/journal.pcbi.1000480.g005
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model. For dw40, only Rm increases, but Rc decreases with d.

Hence, using more than 40 PCA vectors as basis set would yield an

overfitted model.

The ewMCM related to the increase in HSAS is visualized in

Fig. 6A. The motion is mainly characterized by a lift-off motion of

the polyproline helix with respect to the a-helix. The ewMCM

and the MCM along a are also shown in video S3. The

components ai of a (or bi of the model) are shown in Fig. 6B, and

the variances of the PCs in Fig. 6C. As visible from Fig. 6D, many

PCs contribute to the variance of the HSAS var(HSAS).
Remarkably, PCs with larger index i substantially contribute the

the HSAS, although they hardly contribute to the MSF of the

atom positions (compare Fig. 6C). The cumulative contribution of

the PCs to var(HSAS) (Fig. 6E) indicates that approximately 50%

of the variance (corresponding to 70% of the standard deviation)

of the HSAS in the folded state are explained by the linear model.

Can the model for the HSAS derived from fluctuations in the

folded state predict the HSAS during unfolding? To assess this

particularly rigorous test for the validity of the model, the HSAS

during six independent unfolding events was monitored (blue

background in Fig. 5B). Figure 7A displays two examples for the

HSAS during unfolding events as black curves, and the HSAS

predicted by the model as gray curves. The corresponding plots for

all six unfolding events are shown in Fig. S4. Good agreement is

found with correlation coefficients R between data and model in

the range of 0.72 to 0.88 (insets in Fig. 7 and S4). The respective

scatter plot of HSAS data versus model as combined from all six

unfolding events is shown in Fig. 7B. Reasonable agreement

(R~0:81) between data and model is found. Note that such

unfolding events are not present the model building set. Hence,

the model derived only from the folded state displays predictive

power during a process (initial unfolding) which did not occur in

the model building set. Noteworthy, favorable correlation between

data and model during unfolding can only be achieved if the

collective unfolding modes are at least partially sampled in the

folded state fluctuation. If unfolding modes do not sufficiently

fluctuate in the folded state, no correlation between such modes

and the HSAS can be detected. Figures 7 and S4 show, however,

that folded state fluctuations in this case are sufficient to construct

the HSAS model (and hence, the functional mode) that holds

during initial unfolding.

A Non-Linear Example: RMSD of Leucine-Binding Protein
As an example for a non-linear correlation between a functional

quantity f (t) and collective motions we consider the root mean

square deviation (RMSD) of the backbone atoms of l-leucine-

binding protein (LBP). LBP is a two-domain transport protein

(Fig. 8A) that is subject to a large hinge motion (0.7 nm RMSD)

upon ligand binding [28,57]. The RMSD was computed with

respect to the (apo) crystal structure. The RMSD increases as the

protein deviates from the reference, irrespective of the direction of

the collective motion. Hence, it can not be explained in terms of a

linear function of a collective coordinate. Because the RMSD is

frequently assessed in MD studies, we use it as a model quantity to

demonstrate the use of mutual information (MI) in FMA.

The RMSD is plotted in Fig. 8B. The collective vector a was

optimized such that pa(t) displays the maximal MI to the RMSD.

To this end, the first 80 ns of the simulation were applied as model

building set, omitting the first nanosecond for equilibration (red

background in Fig. 8B), and the remaining frames were applied as

cross-validation set (green background). The first 10 PCA vectors

from a PCA of the backbone atoms were used as basis set for a (not

shown). Figure 8C presents the RMSD versus the optimized

collective coordinate pa for the model building set (red dots) and

the cross-validation set (green dots). As expected, the RMSD and

pa are substantially correlated, and the correlation is highly non-

linear as visible from the non-linear RMSD-pa point cloud. The

non-linear model for the RMSD was constructed by fitting a cubic

B-spline (black curve in Fig. 8C) to the RMSD-pa points of the

model building set. Using this model, the RMSD of the cross-

validation set was predicted and compared to the RMSD from the

simulation (red dots in Fig. 8D). Excellent agreement (Rc~0:97)

between data and model is found.

For comparison, we tried to derive a linear model for RMSD

using the Pearson coefficient R as correlation measure. However,

this linear model has little predictive power as visible from model-

versus-data scatter plot of the cross-validation set (black dots in

Fig. 8D, Rc~0:42). The failure of R to detect the correlation

Figure 6. Collective motion related to the increase in hydro-
phobic solvent-accessible surface (HSAS) of Trp-cage. (A)
Cartoon representation of the ensemble-weighted MCM contributing
to the increase in HSAS. Side chains are shown as sticks. (B) Eigenvalues
s2

i of the principal components (PCs), (C) components ai of the
collective vector a with respect to the PCA vectors ei . (D) Contribution
and (E) cumulative contribution of the ith PC to the variance of the
model. The dashed line indicates the variance var(HSAS) of the HSAS
during the simulation.
doi:10.1371/journal.pcbi.1000480.g006
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between RMSD and a single collective motion is also apparent from

Fig. 8E which plots Rm and Rc as a function of the number of PCA

vectors d used as basis set. Irrespective of d, Rc (black curve) is

substantially smaller than Rm (blue curve), indicating overfitting. In

this example, using more than 10 PCA vectors as basis set would

increase Rc, but Rc remains much smaller than Rm. Note that the

model derived using the MI as correlation measure displays excellent

correlation between data and model for both model building and

cross-validation sets (green and red curves in Fig. 8E, respectively).

Figure 9F presents the analysis of the convergence of FMA with

the number of frames in the model building set by plotting Rc and

Rm as a function of simulation time in the model building set. All

remaining frames of the 100-ns trajectory were applied for cross

validation, and the first 10 PCA vectors were used as basis set.

When optimizing the MI (red and green curves), a model building

set of 11 ns is sufficient to derive a good model (Rc§0:9) for the

remaining simulation. In contrast, using less than 5 ns for model

building may yield a highly overfitted model, as visible from a

Figure 7. Predictive power of HSAS model during the initial unfolding events. (A) HSAS (black) during unfolding events of Trp-cage
simulations 1 and 2 and the prediction by the HSAS model (gray). The correlations R between model and data are printed as insets. To facilitate the
comparison between data and model in these plots, all HSAS curves were slightly smoothed by running averages. The R-values were computed from
the non-smoothed data (not shown). The HSAS and the prediction of all six unfolding events are shown in the supporting material. (B) Scatter plot of
HSAS data versus model as collected from all six unfolding events.
doi:10.1371/journal.pcbi.1000480.g007

Figure 8. Functional mode analysis of the RMSD of leucine-binding protein (LBP) with respect to its apo structure. (A) Apo structure of
LBP in cartoon and surface representation. (B) RMSD with respect to the apo structure versus simulation time. Model building and cross-validation
sets are highlighted by red and green background, respectively. (C) RMSD versus the collective coordinate pa optimized via mutual information (MI).
Model building set (red dots), cross-validation set (green dots), and spline fitted to the model building set (black curve). (D) Scatter plot of cross-
validation set showing model versus data. Optimizing MI yields favorable correlation (red dots, Rc~0:97), optimizing the Pearson coefficient only
poor correlation (black dots, Rc~0:42). (E) Correlations Rm and Rc of the model building and cross-validation sets, respectively, versus the number of
PCA vectors d used during the optimization. MI optimization (green/red curves) is compared to Pearson optimization (blue/black curves). (F)
Convergence of FMA with simulation time in the model building set (MBS). Rm and Rc (from Pearson and MI optimization, compare legend) are
showns as a function of simulation time in the MBS using 10 PCA vectors as basis set. All remaining frames of the 100-ns trajectory were applied as
cross validation set.
doi:10.1371/journal.pcbi.1000480.g008
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small (or even negative) Rc (red curve). When optimizing the

Pearson coefficient (black and blue curves), the model quality as

measured from Rc is substantially poorer as compared to the

model optimized via MI. In addition, Rc is highly depdendent on

the length of the model building set, further emphasizing that the

the Pearson coefficient is an unsuitable measure to assess

correlation between the RMSD and a single collective mode.

The ewMCM that effects the optimized collective coordinate pa

(and hence, the RMSD) is visualized in Fig. 9A. The motion is

characterized by a large hinge of the two domains with respect to

each other. The collective motion is decomposed into the PCs in

figs. 9B–D. The coordinates ai of a are sown in Fig. 9B and the

variances of the PCs in Fig. 9C. Figure 9D displays the

contributions of the PCs to the variance of pa, indicating that

the first PC almost completely accounts for the variance of pa. This

finding is expected because the first PC is constructed such that it

accounts for the largest possible fraction of the RMSD. Hence,

Fig. 9D may be considered as a further validation of the technique.

Discussion

We have presented a novel analysis technique termed functional

mode analysis (FMA) to systematically identify functionally

relevant collective motions in proteins dynamics. Given an

arbitrary quantity f (t) considered relevant to the function of the

protein of interest, the approach extracts the linear collective

motion which is maximally correlated to f (t). We have used two

different measures to quantify the correlation between f (t) and the

collective motion. (i), the Pearson coefficient which measures linear

correlation only, and (ii), the mutual information (MI) which can

assess any kind of correlation including non-linear and higher

order correlation. The ‘maximally correlated motion’ (MCM)

must be distinguished from the ‘ensemble-weighted MCM’

(ewMCM) that –based on the sampling in the input ensemble–

has the largest likelihood to contribute to large fluctuations in f (t).
Numerous proteins accomplish their biological function by

structural transitions such as hinge motions, domain rotations, or

side chain reorientations [2]. For many proteins it is far from

obvious how functionally relevant quantities are related to such

collective atomic motions. In such cases, the proposed technique is

expected to elucidate relations between collective motions (i.e.

protein dynamics) and protein function. Moreover, the MCM or

the ewMCM can be enhanced or steered during a follow-up

simulation, allowing one to trigger functional transitions or to

enhance the sampling of rare functional events [58,59]. Alterna-

tively, the MCM can be biased to compute free energy differences

between different functional states (using, e.g., umbrella sampling).

The success of the technique rests on two prerequisites: (i) The

collective motion a must be representable by a linear combination

of the chosen basis set feig. At the same time, the basis set should

not be too large to avoid overfitting. (ii) Sufficient (linear or non-

linear) correlation between f (t) and the single collective motion

must be detectable. Future efforts will focus on ameliorating the

first condition.

Optimization of the collective vector a via the Pearson

coefficient is closely related to the construction of a model for

f (t) as a linear function of a set of given collective coordinates.

When using MI as correlation measure, a non-linear model for

f (t) can be constructed from a general set of functions (such as

splines). The given collective coordinates used as basis set may

correspond to motions along PCA vectors, normal modes, or to

motions in any other useful coordinate system such as rotations of

dihedral angles. If these given coordinates have an intuitive

meaning (such as the hinge-bending mode in T4L), the derived

model can quantify the contributions of intuitive collective motions

to the variance of f (t), and hence, provide a functional

interpretation of the collective dynamics.

The source code of an FMA implementation is available on the

authors’ web site http://www.mpibpc.mpg.de/groups/de_groot/

software.html.

Supporting Information

Text S1 Text S1

Found at: doi:10.1371/journal.pcbi.1000480.s001 (0.06 MB PDF)

Text S2 FMA of the end-to-end distance of an a-helix

Found at: doi:10.1371/journal.pcbi.1000480.s002 (1.92 MB PDF)

Figure S1 Estimation of the volume of the lysozyme catalytic

cleft. A block of test atoms with the approximate shape of the

Figure 9. Collective motion related to the increase in RMSD of leucine-binding protein (LBP). (A) Backbone representation of the
ensemble-weighted MCM motion contributing to the increase in RMSD. (B) components ai of the collective vector a with respect to the PCA vectors
ei . (C) Eigenvalues s2

i of the principal components (PCs), (D) Contribution of the ith PC to the variance of the collective coordinate pa .
doi:10.1371/journal.pcbi.1000480.g009
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binding site was set up by placing the test atoms on a grid of

spacing 1 Å (red block in fig. S1A). The block was placed into the

catalytic cleft of a reference structure of T4 lysozyme (T4L). Each

T4L structure from the simulation trajectory was fitted onto the

reference structure using a least square fit on the backbone atoms.

Figure S1A shows one example of a fitted structure, together with

the block of test atoms. Subsequently, the test atoms which

overlapped with the fitted structure were removed with the genbox

tool (fig. S1B). Every remaining atom contributed 1 Å3 to the cleft

volume.

Found at: doi:10.1371/journal.pcbi.1000480.s003 (0.27 MB JPG)

Figure S2 Convergence of FMA with simulation time. (A–C)

Correlations Rc (black curves) and Rm (red curves) of the cross

validation and model building sets, respectively, as a function of

the number of frames (or simulation time) in the model building set

(MBS). (A) Helix end-to-end distance Lh. Approximately 30 frames

are sufficient to construct a reliable model for Lh, as visible from

the Rc curve (compare Text S2). (B) T4 lysozyme Glu11-Asp20

distance dED. Approximately 10 ns of simulation are sufficient to

yield reasonable models for Vcleft and dED, although the model

quality as measured by Rc may slightly increase when applying

more than 40 ns as MBS. (C) Hydrophobic solvent-accessible

surface (HSAS) of Trp-cage in the folded state. From the folded

states of the 8 Trp-cage simulations (yellow background in Fig. 5B),

an increasing fraction (e.g. 20%) was used as model building set,

whereas the remaining fraction (e.g. 80%) of the folded states were

applied as cross validation set. As visible from the black Rc curve,

applying more than 30% of the simulation hardly improves the

prediction for the remaining frames. The respective plots for the

lysozyme cleft volume and the RMSD of leucine-binding protein

are shown in Figs. 3 and 8F, respectively.

Found at: doi:10.1371/journal.pcbi.1000480.s004 (0.06 MB PNG)

Figure S3 Scatter plots showing model versus data of the model

building sets. (A) Helix end-to-end distance, (B) Glu11-Asp20

distance of T4 lysozyme (T4L), (C) cleft volume of T4L, (D)

hydrophobic solvent-accessible surface of Trp-cage, and (E) RMSD

of backbone atoms of leucine-binding protein (LBP) with respect to

its apo structure. Optimization of the mutual information (MI, red

dots) yields larger correlation than optimization of Pearson’s

coefficient (black dots).

Found at: doi:10.1371/journal.pcbi.1000480.s005 (0.26 MB PNG)

Figure S4 Predictive power of the model for the hydrophobic

solvent-accessible surface (HSAS) during six initial unfolding

events. HSAS (black curves) during unfolding events and the

prediction for the HSAS by the model (red curves). Note that the

model was derived only from fluctuations in the folded state. The

correlation R between model and data (printed as insets) lies in the

range of 0.72 to 0.88. To facilitate the comparison between data

and model in these plots, all HSAS curves were slightly smoothed

by running averages. The R-values were computed from the non-

smoothed data (not shown).

Found at: doi:10.1371/journal.pcbi.1000480.s006 (0.12 MB PNG)

Video S1 Movie showing the MCM (top) and the ewMCM

(bottom) related to the increase of cleft volume Vcleft of T4

lysozyme.

Found at: doi:10.1371/journal.pcbi.1000480.s007 (2.99 MB

MPG)

Video S2 Movie showing the MCM (top) and the ewMCM

(bottom) related to the increase of the distance dED between Glu11

and Asp20 in T4 lysozyme.

Found at: doi:10.1371/journal.pcbi.1000480.s008 (3.18 MB

MPG)

Video S3 Movie showing the MCM (left) and the ewMCM

(right) related to the increase in hydrophobic solvent-accessible

surface of Trp-cage.

Found at: doi:10.1371/journal.pcbi.1000480.s009 (2.35 MB

MPG)
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