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Abstract: We investigate the parallel scaling of the GROMACS molecular dynamics code on Ethernet Beowulf clusters
and what prerequisites are necessary for decent scaling even on such clusters with only limited bandwidth and high
latency. GROMACS 3.3 scales well on supercomputers like the IBM p690 (Regatta) and on Linux clusters with a special
interconnect like Myrinet or Infiniband. Because of the high single-node performance of GROMACS, however, on the
widely used Ethernet switched clusters, the scaling typically breaks down when more than two computer nodes are
involved, limiting the absolute speedup that can be gained to about 3 relative to a single-CPU run. With the LAM MPI
implementation, the main scaling bottleneck is here identified to be the all-to-all communication which is required every
time step. During such an all-to-all communication step, a huge amount of messages floods the network, and as a result
many TCP packets are lost. We show that Ethernet flow control prevents network congestion and leads to substantial
scaling improvements. For 16 CPUs, e.g., a speedup of 11 has been achieved. However, for more nodes this mechanism
also fails. Having optimized an all-to-all routine, which sends the data in an ordered fashion, we show that it is possible to
completely prevent packet loss for any number of multi-CPU nodes. Thus, the GROMACS scaling dramatically improves,
even for switches that lack flow control. In addition, for the common HP ProCurve 2848 switch we find that for optimum
all-to-all performance it is essential how the nodes are connected to the switch’s ports. This is also demonstrated for the
example of the Car-Parinello MD code.
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Introduction

Numerical molecular dynamics (MD) is computationally very
demanding. A protein immersed in a water box is a typical example
of an MD system which often consists of several hundred thou-
sands of atoms. A numerical simulation that covers a significant
time-span—to reveal protein unfolding for example—can take up
to years even on a modern parallel computer. Scientists needing to
perform parallel MD can today choose from several packages, some
of which are freely available, e.g. GROMACS1 and NAMD,2 and
others that come at a licensing cost, e.g. CHARMM3 and AMBER.4

The GROMACS5, 6 MD engine makes extremely efficient use
of a computer’s processor with highly optimized assembly code,
rendering it one of the fastest MD programs available. Of course,

the faster a time step is executed on a single processor, the more
the parallel speedup is hindered by communication latencies. But
since a low-latency network is expensive, most clusters rest on the
standard Ethernet interconnect only. However, as will be shown here,
tremendous scaling improvements and speedups can be achieved by
digging a bit into the technical details. As will be shown, nearly the
same speedups can be achieved by our improvements on simple
Ethernet compared to switching to e.g. Myrinet. Accordingly, one
will be rewarded by saving a lot of computer time, real time, and
also money. We here point out steps that enable decent scaling on
off-the-shelf technology clusters. This is not only of interest for the
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continuously increasing community of GROMACS users,1 since
much of this will also be applicable to other parallel programs that
suffer from similar scaling problems.

GROMACS uses the Message Passing Interface (MPI) standard7

for communication between the processors. At the start of a simula-
tion the atoms are distributed to the processors (particle distribution).
Coordinates and short-range nonbonded forces (pairwise Coulomb
and Van-der-Waals interactions) are at each time step transferred in
a ring structure,8 similar to a systolic loop method.9 The long-range
electrostatic forces are evaluated with the Particle-Mesh-Ewald
(PME) method10, 11 which is significantly more accurate than a
simple cutoff treatment.

The 3.3 version of the code scales well on shared memory super-
computers like the IBM Regatta as well as on Linux clusters with
a high bandwidth/low latency network like Myrinet or Infiniband.
However, on cost-efficient Gigabit Ethernet clusters, parallel runs
on three computer nodes are often even slower than on two nodes
(each node containing one or two CPUs in our study). We find that
the breakdown in scaling is due to network congestion in phases of
all-to-all communication.

In this paper we investigate the all-to-all routine, as it is often
the main scaling bottleneck for GROMACS on Ethernet. The
MPI_Alltoall routine is called twice each time step. It performs a
parallel transpose within the Fast Fourier Transformation (FFT), the
latter being essential for parallel PME calculation. During an all-to-
all call, each process sends a unique message to every other process.
Therefore, this communication type is also referred to as all-to-all
personalized communication (AAPC). In our case, the individual
messages within an all-to-all have the same size.

To systematically investigate the origin of the scaling problems
we benchmark both the entire application (with two typical MD
systems) as well as the isolated all-to-all routine. This we do for
LAM/MPI,12–14 which is mostly used for GROMACS on Ether-
net, and for MPICH,15, 16 which few GROMACS users adopt for
Ethernet.

We find that the MPI_Alltoall performs significantly better
when IEEE 802.3x link-layer flow control17 is activated. For net-
work switches not supporting flow control, we have implemented
an ordered all-to-all routine that performs reliably well for typ-
ical GROMACS all-to-all message sizes. Both flow control and
the ordered all-to-all routine substantially enhance the scaling
properties on Ethernet.

Setup

The reported benchmarks were carried out on a Beowulf cluster
consisting of 32 identical nodes running the Linux 2.6.5 kernel. The
nodes had 2 GHz dual-CPU AMD Opteron processors, 1024 kB
cache, 1 GB RAM, and Broadcom NetXtreme BCM5704 onboard
Ethernet cards. They were connected with Gigabit Ethernet to a
48-port HP ProCurve switch (HP 2848). The switch was config-
ured to operate in qos-passthrough-mode, which reduces the number
of queues for traffic of different priority from 4 to 2. As a result,
more of the switch’s memory is available for MPI messages. In
this mode, which is recommended for lossless data transfer at line
speed,18 we got better timings especially for large CPU numbers.
Note that earlier benchmarks on a 32-node dual-CPU Intel Xeon

cluster (2.4 kernel) with Intel 82541 onboard Ethernet cards and
the same switch have shown comparable results, both for the GRO-
MACS speedups as well as for the systematic all-to-all tests. For the
latter cluster version 1.2.6 of MPICH was used.

We use either LAM 7.1.1 or MPICH-2 1.0.3 (with the ch3:ssm
device) and the GNU C 3.3 compiler. Both LAM and MPICH
exploit fast shared memory communication when messages are sent
between CPUs on the same node. The timing behavior of the pro-
gram is logged with MPICH’s MPE utilities15 which are compatible
to any MPI implementation. Time measurements have been done
with the MPI_Wtime timer, which for our purposes has a suffi-
ciently high resolution of 10−6 s. The reported GROMACS timings
are averages over 100 time steps.

For the parallel speedup measurements we chose as an MD test
system an Aquaporin-1 (AQP1) protein tetramer embedded in a
lipid bilayer membrane surrounded by water,19 which comprises
ca. 80,000 atoms. We also report benchmarks for the DPPC system,
which is part of the benchmark suite that can be downloaded from
the GROMACS homepage. It consists of 1024 dipalmitoylphos-
phatidylcholine (DPPC) lipids in a bilayer configuration plus water,
in total ca. 120,000 atoms. For both systems, Coulomb interactions
were evaluated with PME, meaning that all forces within the cutoff
radius rc are directly calculated while the long-range forces are each
time step interpolated from a mesh. We chose rc = 1.0 nm for AQP1
and rc = 1.2 nm for DPPC.

The parallel speedup SpN of an application running on N proces-
sors is the execution time t1 on 1 CPU divided by the execution time
tN on N CPUs, Sp = t1/tN . The scaling ScN is the speedup divided
by the number of processors, ScN = t1/(N · tN ). Some exemplary
speedups for the AQP1 system on high performance networks are
Sp8 = 6.2, Sp16 = 10, Sp32 = 12 for Myrinet (on the Xeon Cluster),
Sp16 = 11, Sp32 = 14 for Infiniband (on Sun dual-CPU 2.2 GHz
Opterons), and Sp32 = 21 on one Regatta node (shared memory).

For comparison, we also performed the benchmarks with
Myrinet-2000 interconnect hardware. The Myrinet cluster consisted
of 2 GHz Opterons with 1024 kB cache and 1 GB RAM, and was
running the 2.6.14 kernel. Here, MPICH-MX 1.2.6 was used.

GROMACS Parallel Speedups on Ethernet

With LAM, on Gigabit Ethernet the maximum speedup that can be
reached with the switch’s factory settings is Sp4 = 3.1 for AQP1
(Fig. 1, +) and Sp4 = 3.4 for DPPC (Table 1). The speedup maxi-
mum occurs for the case of two dual-CPU nodes. Employing more
nodes leads to slower execution.

This behaviour does not depend upon the switch in use. We also
tested a 3Com 3870, a 3Com 5500, a HP 3400CL/24, and a D-Link
DGS-1016D switch for up to 10 nodes and got the same results as
in the case of the HP 2848. While the DGS-1016D does not support
flow control, this mechanism was disabled by default in all of the
other switches.

With the help of MPE’s Jumpshot program20 a detailed picture
is obtained of what each processor does during program execution.
Figure 2 shows two time steps while running the AQP1 system on
six CPUs (3 nodes) using LAM. The second time step is signifi-
cantly longer than the first one. Most of the time is spent in a call to
MPI_Alltoall, from which CPUs 4 and 6 return normally, while the
others are delayed for 200–250 ms.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 1. GROMACS 3.3.1 speedups for AQP1 employing different all-to-alls with and with-
out link-layer flow control (f.c.). +: LAM MPI_Alltoall without f.c., �: LAM MPI_Alltoall
with f.c., ◦: LAM with ordered all-to-all (same results with and without f.c.), ·: MPICH-2
MPI_Alltoall with f.c. Dashed grey line indicates ideal speedup. All speedups relative to the
LAM single CPU case. For comparison, the solid grey line shows the speedups reached with
a Myrinet interconnect.

These delays exclusively happen in the MPI_Alltoall and are
more frequent when more nodes take part in the communication.
As a result, the average time step length cannot be reduced below
200 ms for >2 nodes since then more and more MPI_Alltoall calls
get delayed.

The reason for these delays are lost TCP packets due to network
congestion. Lost packets show up e.g. in the ifconfig utility for the
corresponding network interfaces or in the switch’s port counters.

While e.g. OpenMPI21 and MPICH-2 use distinct algorithms
depending on message size and CPU number,22 the all-to-all imple-
mentation in LAM and MPICH-1∗, prior to version 1.2.6, is
rather simple: First, all the sends and receives are initiated, then
MPI_Waitall is called to wait for the communication to finish. Thus,
it is not controlled in which order the messages reach the receivers.
Because in an all-to-all communication on N processors altogether
N · (N − 1) messages are sent, it becomes more and more likely
with growing N that two or more senders transmit simultaneously
to the same receiver. The switch can only forward part of that data
to the receiver while the other data fills the switch’s buffers. If these
buffers are full before the senders stop sending, the switch drops
excess packets. This is inefficient since the operating system has to

∗The all-to-all source codes can be found in the following locations, relative
to the parent directory of the respective distribution: LAM: ./share/ssi/coll/
lam_basic/src/ssi_coll_lam_basic_alltoall.c, MPICH-pre 1.2.6: ./src/coll/
intra_fns.c, MPICH-1.2.6 or later: ./src/coll/intra_fnc_new.c.

detect the drops and then has to invoke a retransmit, resulting in the
observed time delay of approximately 200 ms.

The IEEE 802.3x standard defines a flow control mechanism
at the link level to prevent network congestion.17, 23, 24 It gives the
receiving device R, be it a switch or a computer’s network interface,
the possibility to send a PAUSE frame to tell the source to stop send-
ing. The source then interrupts sending for the time period requested
in the PAUSE frame or until it receives another PAUSE frame from
R with a wait time of zero. Flow control has to be activated on both
the computer’s network interfaces and on the corresponding ports
on the switch. Note that enabling flow control on the HP 2848 at

Table 1. GROMACS 3.3.1 Speedups for the DPPC System, Relative to the
LAM Single-CPU Case.

CPUs 1 4 24 8 16 32

1 CPU
node LAM 1.00 1.96 2.7 1.9 2.0 1.9

LAM + flow control 1.00 1.95 3.70 6.75 11.2 3.8
LAM + ordered all-to-all 1.00 1.89 3.68 6.43 10.7 14.5
MPICH-2 + flow control 0.97 1.93 3.37 6.58 11.8 15.8
MPICH-1.2.6 with Myrinet 0.95 2.02 3.87 7.72 13.4 15.0

2 CPUs
node LAM 1.00 2.08 3.44 1.8 2.7 2.8

LAM + flow control 1.00 2.08 3.44 6.13 10.3 12.7
LAM + ordered all-to-all 1.00 2.07 3.30 6.02 10.2 11.5
MPICH-2 + flow control 0.97 2.02 3.28 6.15 11.5 15.1
MPICH-1.2.6 with Myrinet 0.95 1.95 3.69 7.23 13.2 17.3

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 2. Time versus CPU number for two GROMACS time steps as logged with the MPE tools. First
time step spans 0.18 s (t = 17.85 s–18.03 s), second time step 0.42 s (t = 18.03 s–18.45 s). Black bars (*)
indicate MPI_Alltoall calls.

first showed no effect. After updating from firmware version I.07.31
to I.08.61 it worked as expected.

With active flow control, the all-to-all delays disappear for up to
16 nodes, and the overall scaling is significantly better, see Figure 1
(�) and Table 1. For AQP1, the average time-step length reduces
to 68 ms on 16 single-CPU nodes, the corresponding speedups are
Sp8 = 5.7 and Sp16 = 8.4. The speedups on dual-CPU nodes are
slightly smaller, Sp8 = 5.3, Sp16 = 7.8, because the available band-
width is shared among two CPUs each. In the case of 32 nodes there
is severe packet loss even with flow control.

The dotted line in Figure 1 shows the AQP1 scaling with MPICH-
2 and flow control. On up to 16 CPUs the scaling is comparable to the
LAM case with flow control, on 32 CPUs the scaling is even better.
The absolute execution time for this benchmark on 1–8 CPUs is
about 15% less for LAM compared to MPICH. When comparing the
execution times of a serial GROMACS (i.e. without MPI support)
to an MPICH and a LAM/MPI capable version, it turns out that
actually the LAM version is faster than the other two. This results
from LAM’s special memory management. When configuring LAM
--without-memory-manager the execution times of the serial, LAM,
and MPICH version on a single CPU are comparable.

It has to be noted that we experienced such a big performance
difference between LAM and MPICH only for the AQP1 bench-
mark. For other MD systems, e.g. for the DPPC benchmark, the
single-CPU execution times only differ by a few percent (see
Table 1).

Systematic Tests with MPI All-to-All Communication

For a more systematic analysis we created a synthetic benchmark
that performs all-to-all communication with various data volumes
for different CPU numbers (download available1). In an all-to-all
on N processors, a given process sends N − 1 distinct messages of
size S to the N − 1 other processes. Hence, N(N − 1) messages of
size S are transferred. Let �t be the time needed to transfer all those
messages, then the throughput T per CPU is T = (N − 1)S/�t.

Figures 3 (for LAM) and 4 (for MPICH) show T as a function of
S, averaged over 25 calls. The lines and symbols indicate the average

T while the individual throughputs for a given S lie within the grey
vertical bars. Note that variation of the network parameters (e.g. in
/proc/sys/net/ipv4/ ) and NIC driver parameters (e.g. with ethtool)
has an effect on individual throughput measurements but does not
change the overall picture.

The top two panels of the figures show T without flow control.
Generally one expects the throughput to rise with the message size
until it converges against a maximum. With a standard MTU (max-
imum transmission unit), an Ethernet frame is of size 1500 byte +
26 byte TCP overhead. Thus, the maximum throughput evaluates
to Tmax = 1 Gbit/s · (1500/1526) ≈ 117 MB/s or 1/P of that
value for nodes with P processors. In the case of multi-CPU nodes,
this maximum can be exceeded because of the exploitation of on-
node shared memory communication. This is seen in the case of
two dual-CPU nodes, right panels of Figures 3 and 4. Moreover, for
two identical nodes the chance for congestion is negligible, since
exactly one full-duplex connection (node A � switch � node B)
is involved (Fig. 3, upper right panel, �).

If more than one connection is involved, we find that at a critical
S the throughput drops down an order of magnitude or more before
it slowly recovers again for larger message sizes. The more CPUs
take part in the communication, the more pronounced the drop is in
depth and width. The critical S is lower for larger CPU numbers.
This behaviour is most dramatic for the LAM case. With MPICH,
packet loss degenerates performance only when using more than
eight CPUs (Fig. 4, upper panels).

The GROMACS standard PME parameters (fourierspacing =
0.12 nm, PME order = 4) yield a fourier grid of 90 × 88 × 80 =
633,600 points for the AQP1 system. The message size S that is
transferred within the FFT all-to-all from each to each CPU is then
173,184 bytes (on four CPUs), 43,296 bytes (on eight CPUs), 11,808
bytes (on 16 CPUs) or 2952 bytes on 32 CPUs, respectively. A
somewhat smaller system (≈ 4000 atoms, a single Guanylin protein
in water) yields a PME grid of 30 × 30 × 21 = 18,900 points. This
results in sizes S of 5632 bytes (on four CPUs) or 1 408 bytes (on
eight CPUs). No speedups can be gained by running such a small
system on more CPUs. Thus, MD systems, when run in parallel on
≥4 processors, typically lie in the range S = [1500 . . . 175,000]
bytes. In Figures 3 and 4 this range is indicated by the shaded area.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 3. Throughput T for LAM all-to-all communication. Left 1 CPU/node, right 2 CPUs/node. Top:
MPI_Alltoall without flow control (f.c.), middle: MPI_Alltoall with f.c., bottom: ordered all-to-all (same
results with and without f.c.) Legends are given in lowermost plots. Dashed line indicates maximum
throughput. Typical MD systems lie in the shaded area.
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Figure 4. Throughput T for all-to-all communication. Same as Figure 3, but for MPICH-2.
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Figure 5. Example of an ordered communication scheme for five
processes.

Clearly the MPI_Alltoall performance is far from optimal in that
region.

The two middle panels of Figures 3 and 4 show the test results
with activated flow control. Now, the all-to-all works without packet
loss for up to 8 nodes in the case of LAM, and for up to 16 nodes
in the case of MPICH. However, for more nodes the throughput
remains suboptimal. For large node numbers, when a receiver sends
out a PAUSE frame, packets might have to be dropped nonetheless,
because too many of them are already on their way at that time.

Ordered All-to-All Communication

Since on the one hand not every switch supports flow control and
on the other hand flow control does not guarantee good all-to-all
performance for higher numbers of nodes, we tested two alternative
all-to-all routines that are designed to avoid network congestion.
This is achieved by ordering the communication in such a way that
each (full-duplex) Ethernet link is used for exactly one message (in
each direction) at a time. The idea to organize the communication in
barrier-separated phases that are each congestion-free is described
by Karwande et al.25 who follow a more general approach.

Most known all-to-all algorithms are compiled in Faraj and
Yuan26 (see also the references therein), who give detailed per-
formance results for LAM and MPICH on Fast Ethernet clusters
(100 Mbit/s) of different topologies. Kale et al.27 optimized the all-
to-all routine for NAMD,28 which like GROMACS uses this com-
munication pattern for the FFT transpose within PME. Optimized
collective communication routines, including scheduled all-to-alls,
are also implemented in MPICH-1.2.6 as well as in MPICH-222 and
are provided by OpenMPI from version 1.1 on.

The ordered communication scheme works as follows: For P
processes communication gets scheduled in P −1 barrier-separated

phases, as illustrated in Figure 5. In phase i = A . . . D each CPU
sends clockwise to (and receives counterclockwise from) its ith
neighbouring CPU, the others respectively. This is easily imple-
mented with MPI_Sendrecv calls, see Figure 6 for a C code example.

Separating the phases with a barrier ensures that for large mes-
sages the available bandwidth can be exploited without risking
congestion. For small messages S ≤ Sbarr the barrier is not needed
if both with and without flow control packet loss does not occur. For
our setup we empirically determined Sbarr = 16 kB for single-CPU
nodes and Sbarr = 4 kB for dual-CPU nodes. Omitting the barrier for
small messages results in an all-to-all execution time of �t ≈ 1.4
ms compared to �t ≈ 9.2 ms with barrier on 32 single-CPU nodes.
This boosts the throughput of the ordered routine by a factor of ≈ 6
for S < 512 bytes compared to the case with barrier.

The described algorithm works as long as each processor has an
own network adapter. If two or more CPUs share a node’s network
connection, congestion still occurs. In the example case of two CPUs
per node, processor i = 0, 2, 4, . . . shares a node with processor i+1.
In phase A the sending is done in a ring resulting in one arriving,
one intra-node and one leaving message on each node which works
fine on full-duplex Ethernet. In phase B however, CPU 0 on node
zero sends to CPU 2 (which is on node one) while at the same time
CPU 1 on node zero sends to CPU 3, which is also on node one.
That yields two arriving and two leaving messages at each node in
a phase, and congestion is likely to occur. It turns out, however, that
congestion is less severe with this scheme than without any order.

For multi-CPU nodes we have implemented the following
method: In an outer loop, the ordered communication pattern is
established on the basis of the nodes. In this context Figure 5 holds
for 5 nodes, each containing e.g. two CPUs. The communication
pattern defines for a node to which receiver node it has to send and
from which sender node it has to receive. Each CPU of a given node
sends to every CPU on the receiver node, see Figure 7. When this
is done the next communication phase is entered.

Within each phase the switch simply forwards the data from
each sending node to each receiving node. It does not matter
in which order the individual messages of the CPUs get trans-
ferred. Therefore, all communication within a phase can be initiated
with MPI_Isend/MPI_Irecv and then finalized with MPI_Waitall.
Figure 8 shows a C code segment.

The two lower panels of Figures 3 and 4 show the performance of
the ordered all-to-all routines. The results do not depend on whether

for (i=0; i<ncpu; i++) /∗ loop over all CPUs ∗/
2 {

/∗ send to destination CPU while receiving from source CPU: ∗/
4 dest = (cpuid+i) % ncpu;

source = (ncpu+cpuid-i) % ncpu;
6 MPI_Sendrecv(sbuf+dest*schunk, scount, stype, dest, 0,

rbuf+source*rchunk, rcount, rtype, source, 0,
8 comm, &status);

/∗ separate the communication phases for large chunks : ∗/
10 if ((schunk > sbarr) && (i < ncpu-1))

MPI_Barrier(comm);
12 }

Figure 6. C code fragment of the ordered all-to-all for single CPU nodes using
MPI_Sendrecv. ncpu: total number of CPUs, cpuid: CPU number.

Journal of Computational Chemistry DOI 10.1002/jcc
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Figure 7. Ordered communication scheme for the case of four dual-
CPU nodes. Shown is just the traffic to and from node 0 in a single
phase (corresponding to phase A of Fig. 5).

flow control is active or not. For the single-CPU nodes the Sendrecv
scheme of Figures 5 and 6 is shown, for the dual-CPU nodes the
multi-CPU scheme of Figures 7–8. The performance of the Sendrecv
scheme and of the Isend/Irecv scheme for single-CPU nodes is about
the same.

The most important observation is that packet loss does not occur
for any message size on any number of CPUs. Compared to the LAM
case without flow control, the throughput of the orderd routines is
significantly higher in the message size range of interest (grey area)

when employing more than four CPUs. When using 16+ nodes with
LAM, the performance is greatly improved by the ordered routines
within the grey area.

Though the MPICH all-to-all generally performs fine with flow
control (except on 32 nodes) there is a lot to be gained by switching
to the ordered routine for the case without flow control (grey areas).

The MPICH all-to-all22 chooses from four different algorithms
depending on message size and number of CPUs (for the source code
see ./src/mpi/coll/alltoall.c in the basic directory of the MPICH-2
distribution). For short messages (S ≤ 256 byte) and a minimum
of eight CPUs, the Bruck index algorithm is used.29 The higher
throughput for messages S ≤ 256 byte that is easily seen for the dual-
CPU nodes can be attributed to this algorithm. The classic MPICH
algorithm is used for 256 byte < S ≤ 32 kB (as well as for less than
eight CPUs when S ≤ 256 byte). In the classic algorithm – very
similar to LAM – all messages first are initiated with Isend/Irecv
and then waited upon with MPI_Waitall. For large messages and a
power-of-two number of CPUs, a pairwise exchange algorithm is
used, for non-power-of-two numbers a Sendrecv algorithm similar
to the one described in Figures 5 and 6 is used.

We also tested the pairwise exchange algorithm (with barrier)
but found the performance to be similar to the described multi-
CPU algorithm. The main difference between our all-to-all and the
MPICH algorithm for large messages is the existence of a barrier
between the communication phases, which acts as a synchronization
between the CPUs in our case which helps when flow control is not
available.

For small all-to-alls (S < 103 bytes) for both LAM and MPICH
the throughput of the MPI_Alltoall is higher by a factor of about
two, the exact value depending on the number of CPUs. For MPICH,
the ordered all-to-all has a higher asymptotic bandwidth, e.g. for

for (i=0; i<nnodes; i++) /∗ loop over all nodes ∗/
2 {

/∗ send to destination node while receiving from source node : ∗/
4 destnode = (nodeid+i) % nnodes;

sourcenode = (nnodes+nodeid-i) % nnodes;
6 /∗ loop over CPUs on a node : ∗/

for (j=0; j < cpus_per_node; j++)
8 {

/∗ source and destination CPU: ∗/
10 destcpu = destnode*cpus_per_node + j;

sourcecpu = sourcenode*cpus_per_node + j;
12 MPI_Irecv(rbuf+sourcecpu*rchunk, rcount, rtype,

sourcecpu, 0, comm,
14 &requests[j+cpus_per_node]);

MPI_Isend(sbuf+destcpu*schunk, scount, stype,
16 destcpu, 0, comm,

&requests[j]);
18 }

/∗ wait for communication to finish : ∗/
20 MPI_Waitall(2*procs_pn, requests, statuses);

/∗ separate the communication phases for large chunks : ∗/
22 if ((sendcount > sbarr) && (i<nnodes-1))

MPI_Barrier(comm);
24 }

Figure 8. C code fragment of the ordered all-to-all routine for multi-CPU nodes using
MPI_Isend and MPI_Irecv. nnodes: total number of nodes, nodeid: node number.
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single-CPU nodes Tasym ≈ 60 MB/(s·CPU) for the MPI_Alltoall
and Tasym ≈ 90 MB/(s·CPU) for the ordered one. The main benefit
of the ordered routines is, however, that they reliably avoid packet
loss.

GROMACS Parallel Speedups with Ordered All-to-All

We now substituted the MPI_Alltoall calls in the FFT by the ordered
routine from Figure 8 and benchmarked the modified MD code. The
measured AQP1 speedups are shown by the solid lines in Figure 1
(see Table 1 for DPPC).

The speedup Spordered of the modified code (without flow con-
trol) nearly reaches the speedup of Spfc the original code when flow
control is active. For up to 16 CPUs Spordered/Spfc > 0.95.

Thus, by incorporating the ordered all-to-all into the program,
a fallback mechanism can be provided for network setups where
link-layer flow control is not available or for larger systems where
more than 16 CPUs are to be used in parallel. A patch that makes
the necessary changes to GROMACS 3.3.1 can be found on the
GROMACS web page.

Influence of the Switch

During the tests with 32 nodes we experienced the switch itself
to pose a bottleneck. The HP 2848 is constructed out of four 12-
port BroadCom BCM5690 subswitches that are connected to a
BCM5670 switch fabric. The links between the fabric and sub-
switches have a capacity of 10 Gbit/s (full duplex). That implies
that each subgroup of 12 ports that is connected to the fabric can at
most transfer 10 Gbit/s to the remaining ports.

With the ordered all-to-all we experimentally determined that
a maximum of nine ports per subswitch can be used without los-
ing packets in the switch. For high-performance applications this
reduces the 48 available to effectively 36 ports that can be used
simultaneously. Figure 9 illustrates the performance difference of
the MPI_Alltoall when using 32 subsequent ports (1–32 in our case)
compared to a scattered scheme where a maximum of 9 out of each
subgroup of 12 ports were used. With subsequent ports the all-to-all
heavily suffers from packet loss when individual messages S are
larger than 1 kB. On scattered ports there is only packet loss for S
around 32 kB, while the ordered scheme performs optimal.

The results do not depend on whether the port assignment is
accomplished in software (list of nodes in host- or machinefile) or
hardware (wiring at the switch). All benchmarks described above
were obtained with the scattered scheme ensuring optimum switch
performance.

To demonstrate the influence of the port assignment scheme
for a different scientific software application than GROMACS we
performed an additional benchmark using the Car-Parinello (CP)
molecular dynamics approach.30 Car-Parrinello molecular dynam-
ics is an efficient tool for classical MD where the interaction
potential is given by the Kohn-Sham density functional method. In
the CP scheme the forces on the classical nuclei and on the electronic
expansion coefficients of the Kohn-Sham orbitals are computed
from first principle at each time step. The well-established CPMD
simulation package31, 32 employs a plane-wave basis, which results
in a significant complexity reduction of the underlying CP equations.

Figure 9. MPICH-2 all-to-all performance for different assignment
schemes of 32 dual-CPU nodes onto 32 switch ports. ∗/Dots:
MPI_Alltoll on ports 1–32; ·/dashes: same on scattered ports (1–9,
13–21, 25–33, 37–41). �/Solid: ordered all-to-all on scattered ports.

Furthermore, the plane-wave basis allows to use the numerically effi-
cient FFT method. Because of the need to transform several times
between real and reciprocal space during one CPMD integration
step many parallel transposes are called, which leads to an exten-
sive use of the all-to-all communication. For details on the overall
parallel CPMD scheme the reader is kindly referred to Marx and
Hutter33 and Hutter and Curioni.34

To elucidate the scaling properties of the CPMD code on the
Linux cluster already outlined in detail above, we run a simulation
of 64 water molecules inside a cubic box with length 12.42 Å subject
to periodic boundary conditions. The BLYP density functional35 in
connection with norm-conserving Troullier-Martins pseudopoten-
tials36 have been used. The plane-wave kinetic energy cutoff was
set to 120 Ry. The CP equations of motion were solved numerically
with a time step of 4 a.u. and a fictitious electron mass of 350 a.u. was
employed. The benchmark was performed using the CPMD 3.9.1
version compiled with the Intel 8.1 Fortran compiler in 32-bit, and a
compatible LAM 7.1.1 MPI implementation was used throughout.

Using the subsequent ports 1–32 on the switch, the speedups
gained relative to the eight CPU case (Sp8 = 1.0) are Sp16 = 1.9,
Sp32 = 3.2, and Sp64 = 4.5. These values have been gained
with flow control using two CPUs per node and the standard
MPI_Alltoall. Here also, without flow control, no decent scaling
is possible at all. When changing to the scattered port allocation
scheme, a speedup of Sp64,scat = 6.1 is reached for 32 nodes, increas-
ing the corresponding scaling from Sc64 = 0.56 to Sc64,scat = 0.76.
With scattered ports the CPMD benchmark does not suffer from
TCP packet loss within the switch any more, which was the case
when using subsequent ports. Here, with the scattered port scheme,
there is no need to replace the standard MPI_Alltoall by the ordered
version, because the standard all-to-all does not suffer from packet
loss anyhow. This is because the CPMD benchmark resulted in small
enough all-to-all message sizes where congestion does not occur.
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Conclusions

On Ethernet-connected Beowulf clusters, TCP packet loss in the
MPI_Alltoall routine can severely degrade the parallel scaling of
GROMACS, especially when used on top of LAM/MPI. A typical
indication for this problem is that the scaling abruptly breaks down
when employing more than two nodes, which means involving more
than one full-duplex Ethernet connection.

The most straightforward step to overcome this bottleneck is to
activate IEEE 802.3x flow control on the network interfaces of the
nodes and on the corresponding ports on the switch. By default,
flow control was disabled in all of the switches that we tested. With
flow control, on 16 CPUs a speedup of Sp16 ≈ 8 is reached for the
80 k atom MD sytem, and Sp16 ≈ 11 for the 120 k atom system.
Larger systems have the potential to scale similarly well on even
more processors.

For switches that do not support flow control, the incorporation
of an ordered all-to-all routine into GROMACS serves as a fallback
mechanism, preventing packet loss in the most critical part of the
code and thus allowing similar speedups as with flow control. Note
that if flow control is available, it should in any case be enabled, since
with a growing number of CPUs network congestion can become
an issue in parts of the code that perform nicely on a small number
of CPUs.

Because MPICH-2 also uses an optimized all-to-all routine,
packet loss is much more unlikely compared to the LAM pendant.
This results in better parallel speedups, especially when using more
than eight CPUs.

Our benchmarks show that flow control cannot prevent packet
loss in the MPI_Alltoall when the number of nodes exceeds 16,
making an ordered communication scheme inevitable. Ordered
communication schemes as e.g. offered by MPICH-2 and OpenMPI
rely upon the switch not to drop packets when forwarding all data-
streams simultaneously. Packet loss within the common ProCurve
2848 switch can be avoided by using a maximum of 9 out of 12
consecutive ports. We demonstrated this by synthetic tests and also
on the example of the CPMD application.

These findings are very likely applicable to other parallel pro-
grams that suffer from similar performance problems with MPI
communication via the Ethernet.
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