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SUMMARY

We consider the partial least squares algorithm for dependent data and study the consequences
of ignoring the dependence both theoretically and numerically. Ignoring nonstationary depen-
dence structures can lead to inconsistent estimation, but a simple modification yields consistent
estimation. A protein dynamics example illustrates the superior predictive power of the proposed
method.
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1. INTRODUCTION

The partial least squares algorithm introduced by Wold (1966) is a powerful regularized regres-
sion tool. It is an iterative technique that, unlike most similar methods, is nonlinear in the response
variable. Consider a linear regression model

y = Xβ + ε, (1)

where y ∈ R
n , X ∈ R

n×k , β ∈ R
k and the error term ε ∈ R

n is a vector of n independent and
identically distributed random variables. To estimate the unknown coefficients β with partial
least squares, a base of i � k weight vectors ŵ1, . . . , ŵi is iteratively constructed. First, the data
are centred, i.e., y and the columns of X are transformed to have mean zero. Then the first vector
ŵ1 is obtained by maximizing the empirical covariance between Xw and y in w ∈ R

k , subject to
‖w‖ = 1. Afterwards, the data are projected onto the space orthogonal to Xŵ1 and the procedure
is iterated. The i th partial least squares estimator β̂i for β is obtained by performing a least squares
regression of y on X , restricted to the subspace spanned by the columns of Ŵi = (ŵ1, . . . , ŵi ).
Helland (1988) summarized the partial least squares iterations in two steps as

ŵi+1 = b − Aβ̂i , β̂0 = 0,

β̂i = Ŵi (Ŵ T
i AŴi )

−1Ŵ T
i b

(2)

with b = n−1 X T y and A = n−1 X T X , under the assumption that (Ŵ T
i AŴi )

−1 exists. The regular-
ization is achieved by early stopping, that is, by taking i � k.
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Alternatively, β̂i can be defined using the fact that ŵi ∈Ki (A, b), where Ki (A, b) is a Krylov
space, i.e., a space spanned by {A j−1b}i

j=1 (Helland, 1988). Then, one can define the partial
least squares estimators as β̂i = arg minβ∈Ki (A,b)(y − Xβ)T(y − Xβ). There is also a direct cor-
respondence between partial least squares and the conjugate gradient method with early stopping
for the solution of Aβ = b.

Frank & Friedman (1993) and Farkas & Héberger (2005) found the partial least squares
algorithm to be competitive with regularized regression techniques, such as principal compo-
nent regression, the lasso or ridge regression, in terms of the mean squared prediction error.
Also, the optimal number of partial least squares base components is often much lower than that
of principal component regression, as found in Almøy (1996).

Partial least squares regression has a long and successful history in various areas of appli-
cation; see, for example, Hulland (1999), Lobaugh et al. (2001) and Nguyen & Rocke (2002).
However, the statistical properties of the algorithm have received little attention, perhaps because
of the nonlinearity of partial least squares estimators in the response variable. Some attempts to
understand the properties of partial least squares estimators can be found in Höskuldsson (1988),
Phatak & de Hoog (2002) and Krämer (2007). The almost sure convergence of the method was
established by Naik & Tsai (2000). For kernel partial least squares, Blanchard & Krämer (2010a)
obtained results on convergence in probability by early stopping. For the closely linked kernel
conjugate gradient algorithm, Blanchard & Krämer (2010b) established order-optimal conver-
gence rates dependent on the regularity of the target function. Delaigle & Hall (2012) compared
theoretically the population and sample properties of the partial least squares algorithm for func-
tional data.

Regression techniques typically assume independence of responses, but this condition is
often violated, for example if the data are observed over time or at dependent spatial loca-
tions. We are not aware of any treatment of the partial least squares algorithm for dependent
observations. In this work we propose a modification of partial least squares to deal with
dependent observations and study the theoretical properties of partial least squares estima-
tors under general dependence in the data. In particular, we quantify the influence of ignored
dependence.

Throughout the paper we let ‖·‖L denote the spectral norm and ‖·‖ the Frobenius norm for
matrices; ‖·‖ also denotes the Euclidean norm for vectors.

2. PARTIAL LEAST SQUARES UNDER DEPENDENCE

2·1. Latent variable model

In many applications the standard linear model (1) is too restrictive. For example, if a covariate
that is relevant to the response cannot be observed or measured directly, so-called latent variable
or structural equation models are used (Skrondal & Rabe-Hesketh, 2006), where it is assumed
that X and y are linked by l � k latent vectors and the remaining vectors in the k-dimensional
column space of X do not contribute to y. This can be interpreted as if the latent components are
of interest but only X , which contains some unknown nuisance information, can be measured.
Such models are useful in the modelling of chemical (Wold et al., 2001), economic (Hahn et al.,
2002) and social data (Goldberger, 1972).

We consider a latent variable model with the covariates X and response y connected via a
matrix of latent variables N :

X = V (N PT + η1 F), y = V (Nq + η2 f ), (3)
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where N and F are n × l and n × k random matrices, respectively, and f is an n-dimensional
random vector. The random elements N , F and f can have different distributions, but they are
independent of each other, with all entries being independent and identically distributed with
zero expectation and unit variance. The matrix P ∈ R

k×l and vector q ∈ R
l are deterministic and

unknown, along with the real-valued parameters η1, η2 � 0. We assume that n � k � l and that
rank(N ) = rank(P) = l and rank(F) = k almost surely.

The matrix V ∈ R
n×n is a deterministic symmetric matrix, such that V 2 is a positive-definite

covariance matrix. If V |= In , then X in model (3) can be viewed as the matrix form of a
k-dimensional time series {Xt }n

t=1 (Xt ∈ R
k), and y can be viewed as a real-valued time series

{yt }n
t=1. The covariance matrix V 2 determines the dependence between observations, which

could be nonstationary. We call V 2 the temporal covariance matrix of X and define �2 =
P PT + η2

1 Ik . Setting l = k and η1 = 0 reduces model (3) to the standard linear regression model
with dependent observations.

The latent variables N connect X to y, whereas F can be considered as noise, thus giving a
model where not all directions in the column space of X are important for the prediction of y.
The representation (3) highlights practical settings where the partial least squares algorithm is
expected to outperform principal component regression and similar techniques. In particular,
if the covariance of η1 F dominates that of N PT, then the first principal components will be
largely uncorrelated with y. In contrast, the first partial least squares basis components should
by definition be able to recover relevant latent components.

The partial least squares algorithm is run as described in § 1 with matrix X and vector y defined
as in (3). If η1 = 0, then model (1) is correctly specified with q = PTβ, and the partial least
squares estimator (2) estimates β. If η1 > 0, then model (1) is misspecified and β(η1) = �−2 Pq
is estimated instead. Note that β(0) = β.

In the standard partial least squares algorithm it is assumed that V = In . In the subsequent
sections we aim to quantify the influence of V |= In , which is ignored in the algorithm.

2·2. Population and sample partial least squares

The population partial least squares algorithm for independent observations was first intro-
duced by Helland (1990). Under model (3), we modify the definition of the population partial
least squares basis vectors to

wi = arg max
w∈R

k

‖w‖=1

1

n2

n∑
t,s=1

cov(yt − X T
t βi−1, X T

s w), β0 = 0,

where βi ∈ R
k are the population partial least squares regression coefficients. The average covari-

ances over observations are taken, since the data are neither independent nor identically dis-
tributed if V 2 |= In . Solving this optimization problem implies that the basis vectors w1, . . . , wi

span the Krylov space Ki (�
2, Pq); see the Supplementary Material. In particular, under model

(3), the Krylov space in the population turns out to be independent of the temporal covariance
V 2 for all n ∈ N.

For a given Krylov space, the population partial least squares coefficients are obtained as

βi = arg min
β∈Ki (�

2,Pq)

E

{
1

n

n∑
t=1

(yt − X T
t β)2

}
.
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It is easy to see that the solution to this problem is

βi = Ki (K T
i �2Ki )

−1K T
i Pq, Ki = (Pq, �2 Pq, . . . , �2(i−1) Pq),

which is independent of V 2 for all n ∈ N.
To obtain the sample partial least squares estimators β̂i , we replace �2 and Pq by estima-

tors. In the standard partial least squares algorithm, under independence of observations, �2 and
Pq are estimated by unbiased estimators n−1 X T X and n−1 X T y, respectively. However, if the
observations are dependent, such naive estimators can lead to L2-inconsistent estimation, as the
following theorem shows.

THEOREM 1. Suppose that model (3) holds and that the fourth moments of N1,1 and F1,1 exist.
Define A = ‖V ‖−2 X T X and b = ‖V ‖−2 X T y. Then

E
(‖�2 − A‖2)= ‖V 2‖2

‖V ‖4

(
CA +

n∑
t=1

‖Vt‖4

‖V 2‖2
cA

)
,

E
(‖Pq − b‖2)= ‖V 2‖2

‖V ‖4

(
Cb +

n∑
t=1

‖Vt‖4

‖V 2‖2
cb

)
,

where

CA = ‖P‖4 + ‖PT P‖2 + 4η2
1‖P‖2 + η4

1k(1 + k),

cA = {E(N 4
1,1) − 3}

l∑
i=1

‖Pi‖4 + {E(F4
1,1) − 3}η4

1k,

Cb = ‖Pq‖2 + ‖P‖2‖q‖2 + η2
1k‖q‖2 + η2

1η
2
2k + η2

2‖P‖2,

cb = {E(N 4
1,1) − 3}

l∑
i=1

‖Pi‖2q2
i

and Vt denotes the tth column of matrix V .

The scaling factors in A and b have no influence on the sample partial least squares estimators
in (2), so replacing n−1 with ‖V ‖−2 does not affect the algorithm, and both A and b are unbiased
estimators for �2 and Pq, respectively.

If E(N 4
1,1) = E(F4

1,1) = 3, then the constants cA and cb vanish, simplifying the expressions
for the mean squared errors of A and b. This condition is satisfied, for example, by the standard
normal distribution. Thus these terms can be interpreted as a penalization for nonnormality.

Finally,
∑n

t=1 ‖Vt‖4 �
∑n

t,s=1(V T
t Vs)

2 = ‖V 2‖2 implies that the convergence rate of both esti-
mators is driven by the ratio of Frobenius norms ‖V ‖−2‖V 2‖. In particular, if ‖V ‖−2‖V 2‖
converges to zero, then the elements of the population Krylov space �2 and Pq can be esti-
mated consistently. This is the case, for example, for independent observations with V = In ,
since ‖I 2

n ‖ = ‖In‖ = n1/2. However, if ‖V ‖−2‖V 2‖ fails to converge to zero, then ignoring the
temporal dependence V 2 may lead to inconsistent estimation.
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3. PROPERTIES OF PARTIAL LEAST SQUARES ESTIMATORS UNDER DEPENDENCE

3·1. Concentration inequality for partial least squares estimators

In this subsection we apply the techniques of Blanchard & Krämer (2010b), who derived con-
vergence rates for the kernel conjugate gradient algorithm, which is closely related to kernel
partial least squares. Both algorithms approximate the solution on Krylov subspaces, but they
employ different norms. In particular, Blanchard & Krämer (2010b) showed that if the conjugate
gradient algorithm is stopped early, then convergence in probability of the kernel conjugate gra-
dient estimator to the true regression function can be obtained for bounded kernels. Moreover,
the convergence is order-optimal, depending on the regularity of the target function. These results
hold for independent and identically distributed observations.

We avoid the nonparametric setting of Blanchard & Krämer (2010b) and study a standard
linear partial least squares algorithm with a fixed dimension k of the regression space. We allow
the observations to be dependent and, instead of a bounded kernel, consider unbounded random
variables with moment conditions. In this setting we derive concentration inequalities for partial
least squares estimators that allow us to quantify the influence of the temporal covariance.

Regularization of the partial least squares solution is achieved by early stopping, which is
characterized by the discrepancy principle, i.e., we stop at the first index 0 < a0 � a such that∥∥A1/2β̂a0 − A−1/2b

∥∥� τ(δ‖β̂a0‖ + ε), (4)

for δ, ε > 0 defined in Theorem 2 and some τ � 1. Here a denotes the maximal dimension of the
sample Krylov space Ki (A, b) and almost surely equals l + (k − l)I(η1 > 0) where I(·) denotes
the indicator function. For technical reasons we stop at a∗ = a0 − 1 if pa0(0) � ζ δ−1, where pi is
a polynomial of degree i − 1 with pi (A)b = β̂i and ζ < τ−1. The existence of such polynomials
was proved by Phatak & de Hoog (2002). If (4) never holds, we take a∗ = a. With this stopping
index we get the following concentration inequality.

THEOREM 2. Assume that model (3) with η1 > 0 holds and that the fourth moments of N1,1
and F1,1 exist. Furthermore, let a∗ satisfy (4) with τ � 1 and ζ < τ−1. For ν ∈ (0, 1], let
δ = ν−1/2‖V ‖−2‖V 2‖Cδ and ε = ν−1/2‖V ‖−2‖V 2‖Cε such that δ, ε → 0, where

Cδ = (2CA + 2cA)1/2, Cε = (2Cb + 2cb)
1/2,

with CA, cA, Cb and cb as given in Theorem 1. Then, with a probability of at least 1 − ν,

∥∥β̂a∗ − β(η1)
∥∥� ‖V 2‖

‖V ‖2

{
c1(ν) + ‖V 2‖

‖V ‖2
c2(ν)

}
, (5)

where

c1(ν) = ν−1/2c(τ, ζ )‖�−1‖L(Cε + ‖�‖L‖�−3 Pq‖Cδ),

c2(ν) = ν−1c(τ, ζ )‖�−1‖L(CεCδ + ‖�−3 Pq‖C2
δ ),

for some constant c(τ, ζ ) that asymptotically depends only on τ and ζ .

If N1,1, F1,1, f1 ∼ N (0, 1), then the expressions for Cδ and Cε are simplified and the scaling
factor of c1(ν) and c2(ν) can be improved from ν−1/2 to log(2/ν), which is achieved by using
an exponential inequality proved in Theorem 3.3.4 of Yurinsky (1995).

Theorem 2 states that the convergence rate of the optimally stopped partial least squares esti-
mator β̂a∗ to the true parameter β(η1) is driven by the ratio of the Frobenius norms of V 2 and V ,
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similar to the assertions of Theorem 1. In particular, if the data are independent with V = In ,
then β̂a∗ is square-root consistent. In this case c2(ν) is asymptotically negligible. The theorem
excludes the case where ‖V ‖−2‖V 2‖ does not converge to zero.

3·2. Properties of β̂1 under dependence

Nonlinearity in the response variable of β̂i hinders its standard statistical analysis, as no closed-
form expression for the mean squared error of β̂i is available and concentration inequalities sim-
ilar to (5) are, to the best of our knowledge, the only existing results on convergence rates of
partial least squares estimators. However, if the ratio of ‖V 2‖ and ‖V ‖2 does not converge to
zero, Theorem 2 does not hold.

In this subsection we focus on the first partial least squares estimator β̂1, for several reasons.
First, an explicit expression for its mean squared error can be derived. Second, if there is only one
latent component that links X and y, i.e., l = 1 in (3), then consistent estimation of β1 is crucial.
Third, β̂1 is collinear to the direction of the maximal covariance between X and y given by ŵ1,
which is important for the interpretation of the partial least squares model in applications; see
Krivobokova et al. (2012). The next theorem gives conditions under which β̂1 is an inconsistent
estimator of β1.

THEOREM 3. Assume that model (3) holds, k > 1, and the eighth moments of N1,1, F1,1 and
f1 exist. Furthermore, suppose that the ratio ‖V ‖−2‖V 2‖ does not converge to zero as n → ∞.
Then, for either l > 1 and η1 � 0 or l = 1 and η1 > 0, β̂1 is an inconsistent estimator for β1.

The case of l = 1 and η1 = 0, not included in Theorem 3, corresponds to the standard linear
regression model with a single covariate, so the partial least squares estimator coincides with the
ordinary least squares estimator; see Helland (1988).

Hence, if there is only one latent component in the model (i.e., l = 1), η1 > 0 and ‖V ‖−2‖V 2‖
does not converge to zero, then β(η1), which in this case equals β1, cannot be estimated consis-
tently with a standard partial least squares algorithm.

3·3. Examples of dependence structures

In all previous theorems the ratio ‖V 2‖‖V ‖−2 plays a crucial role. Here we study its behaviour
by considering some special covariance matrices V 2. Stationary processes considered in this
section are assumed to have expectation zero and to decay exponentially, i.e., for c, ρ > 0 and
γ (0) > 0,

|γ (t)| � γ (0)c exp(−ρt) (t ∈ N), (6)

with γ : Z → R being the autocovariance function of the process.
In what follows, f (n) ∼ g(n) means c1 � f (n)/g(n) � c2 for n large, 0 < c1 < c2 and f, g :

N → R.

THEOREM 4. Let [V 2]t,s = γ (|t − s|) (t, s = 1, . . . , n) be the covariance matrix of a station-
ary process, such that the autocovariance function γ : Z → R satisfies (6). Then ‖V 2‖ ∼ n1/2

and ‖V ‖2 ∼ n.

Hence, if V 2 in model (3) is a covariance matrix of a stationary process, then ignoring depen-
dence of observations in the partial least squares algorithm does not affect the rate of convergence
of partial least squares estimators, but could affect the constants. Examples of processes with
exponentially decaying autocovariances are stationary autoregressive moving average processes.
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As an example of a nonstationary process, we consider first-order integrated processes.
If {Xt }t∈Z is stationary with autocovariance function γ satisfying (6), then

∑t
i=1 Xi is an inte-

grated process of order 1.

THEOREM 5. Let {Xt }t∈Z be a stationary process with autocovariance function γ satisfying
(6). If γ (t) < 0 for some t, we assume additionally that ρ > log(2c + 1). Let V 2 be the covariance
matrix of

∑t
i=1 Xi . Then ‖V ‖2 ∼ n2 and ‖V 2‖ ∼ n2.

The lower bound on ρ for negative γ (t) ensures that no element on the diagonal of V 2 can
become negative, so that V 2 is a valid covariance matrix.

Theorem 5 implies that the ratio ‖V ‖−2‖V 2‖ does not converge to zero for certain integrated
processes. In particular, combining this result with Theorems 1 and 3 shows that the elements of
the sample Krylov space, A and b, as well as β̂1, are inconsistent if the dependence structure of
the data can be described by an integrated process satisfying the conditions of Theorem 5, such
as an integrated autoregressive moving average process of order (1, 1, 1).

4. PRACTICAL ISSUES

4·1. Corrected partial least squares estimator

So far we have been considering the standard partial least squares algorithm, showing that
if certain dependences in the data are ignored, then estimation will be inconsistent. Hence, it
is crucial to take into account the dependence structure of the data in the partial least squares
estimators.

Let us define b(S) = n−1 X TS−2y and A(S) = n−1 X TS−2 X for an invertible matrix
S ∈ R

n×n . Furthermore, let ki (S) = A(S)i−1b(S), Ki (S) = [k1(S), . . . , ki (S)] ∈ R
k×i and

β̂i (S) = Ki (S){Ki (S)T A(S)Ki (S)}−1Ki (S)Tb(S) (i = 1, . . . , k).
For S = In this yields a standard partial least squares estimator. If S = V , the temporal depen-

dence matrix, then b(V ) and A(V ) are square-root-consistent estimators of Pq and �2, respec-
tively, with mean squared error independent of V , according to Theorem 1. Hence, the resulting
β̂i (V ) is also a consistent estimator of βi , and Theorem 2 shows that β(η1) can be estimated
consistently by early stopping as well. This procedure is equivalent to running the partial least
squares algorithm on V −1y and V −1 X , that is, with the temporal dependence removed from the
data.

In practice, the true covariance matrix V 2 is usually unknown and is replaced by a consistent
estimator V̂ 2. We call the estimator β̂i (V̂ ) the corrected partial least squares estimator. The next
theorem shows that, given a consistent estimator of V 2, the population Krylov space and β(η1)

can be estimated consistently.

THEOREM 6. Let V̂ 2 be an estimator for V 2 that is invertible for all n ∈ N and satisfies
‖V V̂ −2V − In‖L = Op(rn), where rn is some sequence of positive numbers such that rn → 0
as n → ∞. Then

‖A(V̂ ) − �2‖L = Op(rn), ‖b(V̂ ) − Pq‖ = Op(rn).

Moreover, with probability at least 1 − ν (where 0 < ν � 1),

‖β̂a∗(V̂ ) − β(η1)‖ = O(rn),

where the definition of a∗ in (4) is updated by replacing A, b and β̂i with A(V̂ ), b(V̂ ) and β̂i (V̂ ),
respectively.
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Theorem 6 states that if a consistent estimator of the covariance matrix V 2 is available, then
the elements of the population Krylov space, A and b, as well as the coefficient β(η1), can be
consistently estimated by A(V̂ ), b(V̂ ) and β̂a∗(V̂ ), respectively. The convergence rate of these
estimators is no faster than that of V̂ 2. For example, if the temporal dependence in the data
follows some parametric model, then parametric rates of n−1/2 are also achieved for A(V̂ ), b(V̂ )

and β̂a∗(V̂ ). Estimation of V 2 by some nonparametric methods, e.g., with a banding or tapering
approach, leads to slower convergence rates; see Bickel & Levina (2008) or Wu & Xiao (2012).
Similar results are well known in the context of linear regression. For example, Theorem 5.7.1
of Fuller (1996) shows that the convergence rate of feasible generalized least squares estimators
is the same as that of the estimator for the covariance matrix of the regression error.

4·2. Estimation of covariance matrices

To obtain the corrected partial least squares estimator, some consistent estimator of V 2 based
on a single realization of the process is needed. In model (3), the dependence structure over the
observations of X is the same as that of y and so V can be estimated from y alone.

If V 2 is the autocovariance matrix of a stationary process, it can be estimated both parametri-
cally and nonparametrically. Many stationary processes can be sufficiently well approximated by
an autoregressive moving average process; see Brockwell & Davis (1991, § 4.4). Parameters of
autoregressive moving average processes can be estimated by either Yule–Walker or maximum
likelihood estimators, both of which attain parametric rates. Another approach is to band or taper
the empirical autocovariance function of y (Bickel & Levina, 2008; Wu & Pourahmadi, 2009;
Wu & Xiao, 2012). These nonparametric estimators are very flexible, but are computationally
intensive and have slower convergence rates.

If y is an integrated process of order 1, then V 2 can easily be derived from the covariance
matrix estimator of the corresponding stationary process.

5. SIMULATIONS

To evaluate the small-sample performance of the partial least squares algorithm under depen-
dence, we consider the following simulation setting. To illustrate consistency we choose three
sample sizes n ∈ {250, 500, 2000}. In the latent variable model (3) we set k = 20 and l = 1, 5 and
take the elements of P to be independent and identically distributed Bernoulli random variables
with success probability 0·5. Elements of the vector q are qi = 5 i−1 (i = 1, . . . , l), in order to
control the importance of the different latent variables for y. The random variables N1,1, F1,1 and
f1 are taken to be standard normally distributed. The parameter η2 is chosen to obtain a signal-to-
noise ratio of 2 in y, and η1 is set so that the signal-to-noise ratio in X is 0·5. Three matrices V 2

are considered: the identity matrix, the covariance matrix of a first-order autoregressive process
with coefficient 0·9, and the covariance matrix of an autoregressive integrated moving average
process of order (1, 1, 1) with both parameters set to 0·9.

First, we ran the standard partial least squares algorithm on the data with the three aforemen-
tioned dependence structures to highlight the effect of the ignored dependence in the data. Next,
we studied the performance of our corrected partial least squares algorithm applied to nonsta-
tionary data. For this, the covariance matrix of the autoregressive moving average process was
estimated parametrically, as discussed in § 4·2. A nonparametric estimation of this covariance
matrix led to qualitatively similar results.

The boxplots in Fig. 1 show the squared distance between β̂i and β(η1) in 500 Monte Carlo
replications. Two cases are displayed in each panel: one where the model has just one latent
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Fig. 1. Boxplots of the squared distance of the partial least squares estimators β̂i to β(η1) in 500 Monte Carlo
samples. In each panel, the three boxplots on the left correspond to l = i = 1, and the three on the right corre-
spond to l = i = 5. The dependence structures are: (a) first-order autoregressive; (b), (d) autoregressive integrated
moving average of order (1, 1, 1); (c) independent and identically distributed. Standard partial least squares was

employed in (a) and (c) and corrected partial least squares in (d).

component and β̂1 is considered, i.e., l = i = 1, and another where the model has five latent
components and the squared distance of β̂5 to β(η1) is considered, i.e., l = i = 5.

We observe that the mean squared error of β̂i obtained from the standard partial least squares
method converges to zero with increasing sample size for autoregressive and independent data.
However, an autoregressive dependence in the data leads to a somewhat higher mean squared
error; compare panels (a) and (d) in Fig. 1. If the data follow an autoregressive integrated mov-
ing average process and this structure is ignored in the partial least squares algorithm, then
the mean squared error of β̂i converges to some positive constant; see Fig. 1(b). By taking
into account these nonstationary dependencies, the corrected partial least squares algorithm
yields consistent estimation, similar to the independent data case; compare panels (c) and (d) in
Fig. 1.

We conclude that when the observations are dependent, corrected partial least squares
improves estimation: in the case of stationary dependence the mean squared error is reduced,
and in the case of nonstationary dependence the estimation becomes consistent.
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Fig. 2. (a) Distance between the first backbone atom and the first centre of mass of aquaporine; (b) the opening
diameter over time.

6. APPLICATION TO PROTEIN DYNAMICS

Proteins perform their biological functions through particular movements (see, e.g.,
Henzler-Wildman & Kern, 2007), so a key step in understanding protein function is to gain
detailed knowledge of the underlying dynamics. Molecular dynamics simulations (de Groot et al.,
1998) are routinely used to study the dynamics of biomolecular systems at atomic-level detail
on time-scales of nanoseconds to microseconds. Although in principle such studies allow us to
directly examine function-dynamics relationships, the analysis is frequently hampered by the
large dimensionality of the protein configuration space, which makes it nontrivial to identify
collective modes of motion that are directly related to a functional property of interest.

Krivobokova et al. (2012) have shown that partial least squares helps to identify a hidden
relationship between the atom coordinates of a protein and a functional parameter of interest,
yielding robust and parsimonious solutions that are superior to those obtained from principal
component regression. In this section we look at a particular protein studied in Krivobokova
et al. (2012), the water channel aquaporine found in the yeast Pichia pastoris. This is a gated
channel, i.e., the diameter of its opening can change, which controls the flow of water into the
cell. Our goal is to study which collective motions of protein atoms influence the diameter yt of
the channel at time t , as measured by the distance between two centres of mass of the residues
of the protein that characterize the opening. For the description of the protein dynamics we use
an inner model, i.e., at each point in time we calculate the Euclidean distance d between each
backbone atom of the protein and a set of four fixed base points. We denote the p = 739 atoms
by At,1, . . . , At,p ∈ R

3 and the fixed base points by B1, . . . , B4 ∈ R
3, and we let

Xt = {d(At,1, B1), . . . , d(At,p, B1), d(At,1, B2), . . . , d(At,p, B4)}T ∈ R
4p.

The available time-frame has a length of 100 ns, with n = 20 000 equidistant points of observa-
tion. Krivobokova et al. (2012) found that a linear relationship between X and y can be assumed.
Additionally, these data seem not to contradict model (3). Taking a closer look at the data reveals
that both yt and Xt,i (i = 1, . . . , 4p) are nonstationary time series; see Fig. 2. For the calculation
of V̂ 2 we used the banding approach mentioned in § 4·2 and found the results to be very similar
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Fig. 3. (a) Correlation coefficient and (b) residual sum of squares for the predicted opening diameter and the real
data on the test set. The compared methods are principal component regression (grey), corrected partial least

squares (solid black) and partial least squares (dashed black).

to a simple autoregressive integrated moving average process with parameters (3, 1, 1) and cor-
responding coefficients (0·1094, 0·0612, 0·0367, −0·9159). Autoregressive integrated moving
average models have been used previously to study protein time series (Alakent et al., 2004).

To validate our estimators, we used the following procedure. First, the data were split into
two equal parts and the models were built on the first half. Then the prediction was done on the
test set consisting of the second half of the data and the results were compared to yt from the
test set. To measure the accuracy of the prediction we used the Pearson correlation coefficient,
common in the biophysics community, and the residual sum of squares; both of these measures
are plotted Fig. 3. The partial least squares estimator clearly outperforms principal component
regression. The corrected partial least squares algorithm, which takes temporal dependence into
account, delivers better prediction than standard partial least squares. The improvement is most
noticeable in the first components.

High predictive power of the first corrected partial least squares components is particularly
relevant to the interpretation of the underlying protein dynamics. Krivobokova et al. (2012) estab-
lished that the first partial least squares regression coefficient β̂1 corresponds to the so-called
ensemble-weighted maximally correlated mode of motion, which contributes most to the fluctu-
ation in the response y. Overall, because of the low dimensionality, corrected partial least squares
greatly facilitates interpretation of the underlying relevant dynamics, compared with partial least
squares and principal component regression, where many more components are required to attain
the same predictive power.
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Supplementary Material available at Biometrika online includes all the technical details.
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