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Abstract
Nuclear magnetic resonance (NMR) has the unique advantage of elucidating the structure and dynamics of biomolecules in 
solution at physiological temperatures, where they are in constant movement on timescales from picoseconds to milliseconds. 
Such motions have been shown to be critical for enzyme catalysis, allosteric regulation, and molecular recognition. With 
NMR being particularly sensitive to these timescales, detailed information about the kinetics can be acquired. However, nearly 
all methods of NMR-based biomolecular structure determination neglect kinetics, which introduces a large approximation 
to the underlying physics, limiting both structural resolution and the ability to accurately determine molecular flexibility. 
Here we present the Kinetic Ensemble approach that uses a hierarchy of interconversion rates between a set of ensemble 
members to rigorously calculate Nuclear Overhauser Effect (NOE) intensities. It can be used to simultaneously refine both 
temporal and structural coordinates. By generalizing ideas from the extended model free approach, the method can analyze 
the amplitudes and kinetics of motions anywhere along the backbone or side chains. Furthermore, analysis of a large set of 
crystal structures suggests that NOE data contains a surprising amount of high-resolution information that is better modeled 
using our approach. The Kinetic Ensemble approach provides the means to unify numerous types of experiments under a 
single quantitative framework and more fully characterize and exploit kinetically distinct protein states. While we apply the 
approach here to the protein ubiquitin and cross validate it with previously derived datasets, the approach can be applied to 
any protein for which NOE data is available.
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Introduction

The development of methods for determining the structure 
and dynamics of proteins has been instrumental in elucidat-
ing mechanisms behind many important functions, including 

ligand binding, enzyme-catalysis, allosteric regulation, and 
folding. Through the use of several nuclear magnetic reso-
nance (NMR) effects, including scalar couplings, longitudi-
nal/transverse relaxation  (T1/T2), the heteronuclear nuclear 
Overhauser effect (NOE), residual dipolar couplings, cross-
correlated relaxation, and relaxation dispersion, an extraor-
dinary amount of atomic resolution information can be 
extracted about the local structure and dynamics of proteins. 
However, to build a more complete picture of the thermo-
dynamically accessible states of a protein, the determina-
tion of an ensemble of atomic resolution structures is often 
essential. In that regard, homonuclear NOEs, which give 
information about through space interactions between pro-
tons, are of critical importance and have been used in nearly 
all high-resolution structures determined by NMR.

Most NMR structures are solved using distance-based 
methods typically considered to be semiquantitative (Bor-
gias and James 1988; LeMaster et al. 1988), in which NOE 
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cross peaks are analyzed with the isolated spin pair approxi-
mation (ISPA) that assumes any transfer of magnetization 
between protons happens solely through space and does not 
involve the network of neighboring protons. Cross-peaks 
are often categorized as strong, medium, and weak, then 
used to derive approximate upper bound distance restraints 
from which individual structures are solved through com-
putational refinement. Most NMR ensembles deposited in 
the Protein Data Bank (PDB) consist of about 20 of the best 
individually determined structures. Although the heteroge-
neity in these ensembles may reflect true protein flexibility, 
it often results from the uncertainty due to lack of sufficient 
restraints or limitations of the modeling procedures.

Several techniques have been employed to enable the 
determination of more accurate structures and ensembles 
from NMR data. In the decade around which the first NMR 
structure was published (Williamson et al. 1985), there was 
much interest in applying techniques that did not employ 
the ISPA, but instead treated the full matrix of possible 
magnetization transfer pathways through neighboring pro-
tons (Borgias and James 1988; Keepers and James 1984; 
Boelens et al. 1988; Yip and Case 1989; Post et al. 1990; 
Bonvin et al. 1991; Bonvin et al. 1993). However, in most 
of these approaches, a single conformation was assumed to 
be a faithful representative of the structural ensemble of the 
protein. More recently, relaxation matrix calculations were 
used to reweight an ensemble of conformations using maxi-
mum entropy methods (Vasile 2019). Furthermore, other 
efforts have been made to incorporate additional experimen-
tal information into the determination of NMR ensembles, 
either using RDC (Cornilescu et al. 1998; Lange et al. 2008; 
Frank et al. 2009; Fenwick et al. 2011; Montalvao et al. 
2012; Maltsev et al. 2014) or fast timescale order parameter 
 (S2) (Lindorff-Larsen et al. 2005; Richter et al. 2007; Chen 
et al. 2007) data. These efforts incorporated one or more 
of the following features which were probably important 
to their success: addition of experimental data that directly 
captures protein dynamics, fitting experimental data to mul-
tiple structures simultaneously, and the use of explicit sol-
vent molecular dynamics (MD) refinement with high quality 
force fields. More recently, the exact NOE (eNOE) approach 
(Vögeli et al. 2009; Vögeli et al. 2010) has used diagonal 
peaks, buildup curves, and perdeuteration or relaxation 
matrix analysis to more accurately determine NOE rates. 
This has allowed much more precise interatomic distances to 
be inferred and enabled the determination of multi-state pro-
tein ensembles (Vögeli et al. 2012; Chi et al. 2015; Vögeli 
et al. 2016). However, a notable drawback of nearly all NOE 
structure determination efforts to date, including the eNOE 
approach, is that a distinction of time scales for NOE averag-
ing was not attempted and that angular motion is neglected 
during refinement and at best can only be derived in a post 

hoc manner using an independently determined reference 
structure (Vögeli et al. 2009).

This omission is notable because it has been shown that 
determination of effective internuclear distances requires 
taking into account fluctuations in the internuclear orien-
tation, and that this can be affected by anisotropic inter-
nal motions typical in proteins (LeMaster et al. 1988). One 
means of incorporating both radial and angular internal 
dynamics is to explicitly calculate internuclear correla-
tion functions and the resulting NOE rates from molecular 
dynamics trajectories (Bonvin et al. 1993; Brueschweiler 
et al. 1992; Peter et al. 2001; Chalmers et al. 2016). While 
this approach can be used for simulating NMR data and vali-
dating MD simulations, it has limited applications in ensem-
ble determination. One notable hybrid approach involved 
using internuclear order parameters estimated from MD 
simulations to scale NOE rates calculated from an ensem-
ble of structures (Bonvin et al. 1993). However, this method 
depends on having an accurate MD simulation and assumes 
distances average as  r−6. Furthermore, it does not guaran-
tee that the resulting ensemble will have accurate angular 
dynamics, or even the same angular dynamics as the initial 
MD simulation.

The importance of angular dynamics in proteins has long 
been appreciated. Through the use of model free (Lipari and 
Szabo 1982) and extended model free approaches (Clore 
et al. 1990), along with associated experimental advances 
(Kay et al. 1989), the determination of Lipari-Szabo order 
parameters  (S2) has become the most widely applied method 
for elucidating protein dynamics. These values give the 
amplitude of angular fluctuations of bond vectors within the 
protein. The strong dependence of the heteronuclear NOE 
between atoms (e.g. the backbone amide nitrogen/hydrogen) 
on the amplitude of their relative angular motion, together 
with  T1/T2 measurements, is critical for determining order 
parameters. The larger the amplitude, or the shorter the time-
scale of that motion, the more the transfer of magnetization 
via the NOE is attenuated. This same phenomenon is at work 
in homonuclear NOE experiments used to determine intera-
tomic distances.

The approach described here, which we call Kinetic 
Ensemble (KE), explicitly models both the amplitudes 
and timescales of angular motion involved in homonu-
clear NOEs. It involves describing atomic motions using 
a lattice defined by the structural ensemble. Previous 
studies have used the lattice approach to model toy sys-
tems with specialized or approximate spectral density 
functions (Keepers and James 1984; Brueschweiler et al. 
1992; Koning et al. 1990; Liu et al. 1992), making nota-
ble contributions to the understanding of methyl rotation 
and aromatic ring flips (Koning et al. 1990; Liu et al. 
1992). The theory described here is a generalization of 
both the lattice and model free approaches that can handle 
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complex combinations of angular and radial motions in a 
rigorous manner. The importance of hierarchical protein 
dynamics has been previously noted (Henzler-Wildman 
et al. 2007; Smith et al. 2015; Lewandowski et al. 2015), 
and several techniques have been recently developed to 
reweight multi-timescale models built from extensive 
molecular dynamics simulations (Salvi et al. 2016; Wan 
et al. 2016; Capelli et al. 2018). By contrast, our approach 
is better suited for modeling such temporally resolved 
dynamics with an ensemble representation typically used 
to represent NMR structures, as demonstrated on a protein 
system using up to five different timescales of molecu-
lar motion. We show that the timescale of distance fluc-
tuations has a large impact on how those distances are 
averaged over a much broader range of timescales than 
previously appreciated. This is shown to be critical for 
interpreting NOE data in the context of several state-of-
the-art protein ensembles. Despite this, our approach is 
general and can be applied to ensembles derived solely 

from NOEs acquired at a single mixing time and does not 
explicitly require other NMR data.

Results

Kinetic ensemble (KE) approach can be simplified 
to extended model free formalism

To validate the Kinetic Ensemble approach using a multi-
timescale scheme, we used a two-atom, fixed bond length 
system with two slowly interconverting macrostates, each 
consisting of two quickly interconverting microstates 
(Fig. 1). If constructed correctly, this system should reca-
pitulate extended model free formalism (see “Methods”) 
(Clore et al. 1990). The conformations of the four states 
were constructed by rotating the two-atom system within a 
plane. For each macrostate, the angle (θf) between the two 
microstates was set such that the fast timescale order param-
eter (Sf

2) was 0.6. The angle (θs) between the average 

A B

C D

Fig. 1  Kinetic Ensemble method can recapitulate Extended Model 
Free approach a A fixed-distance double atom system showing 
motion on two timescales with different magnitudes of motion (fast: 
Sf

2, slow: Ss
2) can be represented by four microstates with an angle 

(θf) between the two pairs of quickly interconverting microstates and 
another angle (θs) between the average orientations of the two slowly 
exchanging macrostates. Overall molecular tumbling is ignored here. 

b In such a system, the slow timescale (τs) can be represented with 
inter-macrostate rates equal to τs

−1/4. The fast timescale (τf) is cap-
tured by an intra-macrostate rate of (τf

−1−1/2τs
−1)/2. c When the inter-

nal correlation function for this Kinetic Ensemble is calculated, it is 
identical to Extended Model Free. d The same is true for the resulting 
spectral density function, from which NOE rates are determined
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orientations of the macrostates was set such that the overall 
order parameter of the system  (S2) was 0.57, giving a slow 
timescale order parameter (Ss

2 = S2/Sf
2) of 0.95. A transition 

rate matrix (Q) was constructed to recapitulate fast and slow 
timescales of motion (τf and τs, respectively, Fig. 1b). The 
diagonal elements were set to the negative sum of the other 
elements in the corresponding row (not shown). An eigen-
decomposition of the resulting matrix yields three unique 
eigenvalues (0, degenerate − τf

−1, and − τs
−1), indicating two 

distinct timescales of motion. Upon application of the 
Kinetic Ensemble approach, the resulting internal correla-
tion functions and spectral densities exactly match those of 
extended model free theory (Clore et  al. 1990), with 
�c = 5 × 10−9s, ��

f
= �f �c∕

(
�f + �c

)
and ��

s
= �s�c∕

(
�s + �c

)
∶

As this analysis shows, the Kinetic Ensemble approach sim-
plifies to extended model free when the rate matrix has only 
three distinct eigenvalues and bond lengths are kept fixed. 
However, it also handles arbitrarily complex kinetic schemes 
and bond length variability, as discussed below.

Dependence of distance averaging on exchange 
timescale

As is clear from extended model free theory, the particu-
lar timescales at which molecules undergo angular reori-
entation has a large influence on the spectral densities 
and resulting experimental observables. The same is true 
for the timescales at which distances change. For motions 
occurring much faster than molecular tumbling, the NOE 
rate is known to be dependent on the  r−3 average of intera-
tomic distances (r), while motions occurring much slower 
show  r−6 distance averaging. Mathematically, that can be 
expressed J(0) ∝

⟨
r−3

⟩2 for fast motion and J(0) ∝ r−6 for 
slow motion, assuming the NOE rate is dominated by the 
J(0) term, which is true for both the auto (ρ) and cross (σ) 
relaxation rates of macromolecules. The Kinetic Ensemble 
approach should implicitly capture this dependence. To test 
this, we constructed a model system having two states with 
the same orientation but different distances: one  (rA) fixed 
at 1 Å and the other  (rB) varied 1.1–10 Å. While τc was kept 
fixed, the exchange timescale (τex) was varied around τc plus 
or minus three orders of magnitude. For each value of τex, 
the Kinetic Ensemble approach was used to calculate the 
spectral density function with the population of the first state 
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f
S2
s
+
(
1 − S2

f

)
e−t∕�f + S2

f

(
1 − S2

s

)
e−t∕�s

J(�) = 2

⎛⎜⎜⎜⎝

S2
f
S2
s
�c

1 + �2�2
c

+

�
1 − S2

f

�
��
f

1 + �2��2
f

+
Sf
�
1 − S2

s

�
��
s

1 + �2��2
s

⎞⎟⎟⎟⎠

(pA) set to 0, 0.2, 0.4, 0.6, 0.8, and 1.0. At each τex value, 
we used the equation J(0) = 2�c

(
pAr

−n
A

+
(
1 − pA

)
r−n
B

)6∕n 
to fit the effective averaging power (n). The resulting values 
of n are shown in Fig. 2a. When τex is at least two orders of 
magnitude away from τc, the usual assumptions of distancing 
averaging are valid. However, at intermediate timescales the 
averaging power smoothly transitions from three to six. The 
surprisingly shallow slope of this function at τc indicates that 
this distance dependence could be used to extract informa-
tion about dynamics at least an order of magnitude slower 
than molecular tumbling. This finding agrees with previous 
work indicating NOE sensitivity to dynamics plus or minus 
an order of magnitude around τc (Brueschweiler et al. 1992). 
We found that the averaging powers could be empirically fit 
with a hyperbolic function similar to that used for bimolecu-
lar binding, with the midpoint τ1/2:

The previous two examples illustrate a clear timescale 
dependence for dipole–dipole interactions between nuclei 
undergoing either angular reorientation or changes in dis-
tance. In a macromolecule, both types of motion are preva-
lent and convoluted together, precluding the use of simple 
analytical models (Fig. S4). Whereas most macromolecu-
lar modelling efforts neglect one or both types of motion, 
assume that they are separable, or make implicit assumptions 
about the timescale, the Kinetic Ensemble approach models 
the effects of motion in a rigorous manner subject to the 
structural ensemble and transition rate matrix.

Much internal protein motion occurs at a timescale 
similar to overall tumbling

To apply the Kinetic Ensemble approach to a more complex 
biomolecular system, we used the protein ubiquitin. Using 
high-resolution 2D NOESY experiments, we acquired a set 
of buildup curves with 34 equally spaced mixing times from 
5 to 500 ms at a temperature of 308 K. The signal to noise of 
this dataset was excellent and showed a high degree of repro-
ducibility in duplicate experiments. To ensure that we had a 
good basis set of physically realistic ubiquitin structures, we 
initially analyzed the EROS3 ensemble (Lange et al. 2008), 
which was generated by refining randomly selected 8 mem-
ber subsets of 46 crystal structures against NOE and RDC 
data using explicitly solvated molecular dynamics simula-
tions, with the best 22 subsets selected to produce 176 total 
ensemble members.

For modeling ubiquitin, we started using a transition 
rate matrix with the fewest parameters possible, assuming 
a single timescale of motion with a uniform transition rate 

n = 3 + 3∕

(
�1∕2

�ex
+ 1

)
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between all ensemble members (i.e. an N-site jump model). 
This poses the least risk for overfitting, while giving the flex-
ibility for the model to explore averaging regimes between 
 r−3 and  r−6, and varying amounts of NOE attenuation due 
to angular dynamics. Given an overall exchange timescale, 
τensemble, the individual transition rate, k, can be calculated 
k = τ−1

ensemble/N, with number of ensemble members, N = 176. 
It is trivial to verify the overall exchange timescale, as the 
eigenvalues of the transition rate matrix contain a single 
value of 0 and 175 degenerate values equal to − τ−1

ensemble. 
In addition to interconversion between ensemble members, 
methyl and aromatic group rotations were accounted for as 
independent exchange processes (see “Methods”).

To determine the timescales that best fit the experimen-
tal data, we sampled τc and τensemble on a grid and com-
puted the uncentered correlation with experimental NOE 
data at each point (Fig. 3). The uncentered correlation is 
very similar to the Pearson correlation but penalizes data 
with a non-zero y-intercept (see “Methods”). The agree-
ment with experimental data was much more sensitive to 
τc, with large decreases in correlation visible with a less 
than twofold deviation in τc from the optimal value. While 

τensemble showed comparatively less sensitivity over a much 
larger range (± 3 orders of magnitude), a distinct peak 
was seen at around 2.0 ns. After sampling on the grid, 
the timescales from the best fitting point were numeri-
cally optimized to give the best fitting τc value of 4.3 ns. 
Previous measurements of ubiquitin at 308 K have given 
very similar tumbling times of 4.0 ns (Sabo et al. 2012), 
suggesting the protocol can accurately determine kinetics 
from NOE data. Similarly, an overall ensemble timescale 
of 2.0 ns is supported by a comparison of backbone amide 
Lipari-Szabo order parameters and RDC-based order 
parameters. Previous studies (Lange et al. 2008; Lakomek 
et al. 2008) have shown that the majority of angular fluc-
tuations throughout ubiquitin are captured by Lipari-Szabo 
order parameters ( S2

LS
 ), which report on motions close to 

or faster than τc, but some residues show a substantial 
amount of additional motion ( S2

rdc
/S2

LS
 ) in RDC-based order 

parameters ( S2
rdc

 ), which report on dynamics up to the mil-
lisecond timescale. 2.0 ns would therefore be a reason-
able compromise fit of a single exchange timescale to both 
the sub and supra-τc motions. Motions with timescales 
much slower than τc affect the NOE by upweighting the 

Fig. 2  Interatomic distance 
averaging transitions smoothly 
from a power of three to six a 
In a double-atom system with 
states at two distinct distances 
 (r1 and  r2), the Kinetic Ensem-
ble approach can be used to 
understand the dependence of 
the spectral density function, 
J(0), on how the averaging of 
interatomic distances (r) is influ-
enced by the relative timescales 
of exchange (τex) and overall 
tumbling (τc). The black points 
were determined by fitting the 
black equation to simulations 
with different populations of 
the two states. Simulations with 
τex ≪ τc give the expected ⟨r−3⟩2 
dependence and τex ≫ τc give 
the expected ⟨r−6⟩ depend-
ence. Between those two limits, 
there is a smooth transition that 
empirically follows a hyperbolic 
equation (red). Depending on 
the ratio of the two distances 
 (rB/rA), the hyperbolic function 
shifts right or left between the 
two extremes shown, with τ1/2 
being the timescale with an 
averaging power of 4.5. b As 
the distance ratio increases, τ1/2 
goes from 1.00τc to a plateau 
value of 1.36τc

A

B
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contributions of short contacts (through  r−6 averaging) 
without having additional angular attenuation beyond that 
occurring at fast timescales.

Modeling an extended hierarchy of timescales

After already modelling a single ensemble timescale, 
we sought to test whether separating out another, slower 
ensemble motion would further improve the model. Much 
of the supra-τc motion in ubiquitin has been attributed to 
the pincer mode (Lange et al. 2008), which involves open-
ing and closing around the β1–β2 loop and the end of the 
alpha helix. Extensive relaxation dispersion data strongly 
suggests that this motion is faster than 3.4 µs (Massi et al. 
2005; Smith et al. 2016), giving a range of approximately 
three orders of magnitude for the kinetics of this motion. 
Furthermore, even if that level of characterization had not 
been done, the pincer mode is the largest amplitude motion 
observed in unbiased MD simulations (Peters and de Groot 
2012), suggesting questions about its timescale. This pro-
vides a good test case to determine whether NOE data can 
be better modeled using multiple timescales of internal 
motions. To compose such a hierarchy as illustrated in 
Fig. 4a, the overall transition rate matrix was constructed 
with inter-group rates set to τ−1

pincer/N, with N being the 

total number of structures. The intra-group rates were set 
to (τ−1 

ensemble− (1−Ni/N)τ−1
pincer)/Ni, with  Ni being the number 

of structures in the given group (in this case 139 open and 
37 closed).

Eigendecompositon of this rate matrix yields exactly 
three distinct eigenvalues, 0, − τ−1

pincer, and − τ−1
ensemble. The 

rate matrix in Fig. S2a was constructed in the same man-
ner. Keeping τensemble fixed at 2 ns, the optimal correlation 
was found by sampling τpincer on an interval from 2 ns to 
1 µs. (Fig. 4b) The correlation improved as the timescale 
slowed, plateauing at about 100 ns and reaching a maxi-
mum at the limit of 1 µs. While a 1 µs pincer motion might 
be partially visible in relaxation dispersion curves having 
3.4 µs resolution, this was not observed experimentally. 
Nevertheless, because NOE rates are largely insensitive to 
timescale differences in the regime 25–250 times slower 
than overall tumbling (i.e. 100 ns–1 µs here), there is lit-
tle practical effect in using a τpincer somewhat slower than 
experimentally justified. Using a τpincer of 1 µs, τensemble 
was then numerically reoptimized from 2 ns to 1.4 ns. 
This decrease in timescale was likely enabled by reduc-
ing the amount of slow timescale “compromise” required. 
To determine whether the overall increase in uncentered 
correlation was statistically significant, we repeated that 
same optimization procedure 20,000 times using randomly 
grouped sets of 139 and 37 structures. (Fig. 4c) None of 
these random sets showed improvements greater than the 
pincer grouping, suggesting a p ≪ 5 × 10−5.

Most previous efforts to model homonuclear NOE data 
have focused solely on the distance dependence, and there-
fore typically do not address NOEs between atoms with rela-
tively short covalent bond separations. For these atom pairs, 
the NOE will be primarily modulated by dynamics in the 
orientation of the internuclear vector, as it is for backbone 
amide heteronuclear NOEs. Because the KE approach can 
rigorously account for both aspects, we have included these 
low bond separation NOEs in our analysis. As shown in 
Fig. 4d, which compares experimental intensities to those 
calculated using a single 2 ns timescale, nearly all atom 
pairs where the NOE intensity is highly overestimated by 
the model are separated by 2–5 bonds. This suggests that the 
orientational motion of the atom pairs is too low and/or the 
timescale is too slow, both of which result in reduced attenu-
ation of the dipolar interactions. Conversely, the majority of 
atom pairs having highly underestimated NOE intensities 
come from those separated by six or more bonds. However, 
there are a few examples of atoms pairs separated by 2–5 
bonds that are predicted to be lower in intensity than actu-
ally observed.

One of these, the I13 QG2-HB NOE, is highlighted with 
an orange line on the right side of Fig. 4d. Upon changing 
τpincer from 2 ns to 1 µs, this NOE is most responsible for the 
better correlation coefficient. This NOE shows a relatively 

Fig. 3  Optimization of time coordinates gives similar tumbling and 
exchange timescales. Kinetic Ensemble Refinement optimizes the 
timescale of molecular tumbling (τc) and one or more exchange time-
scales (in this case just τensemble). When the two are simultaneously 
optimized for the EROS3 ensemble (purple point), the τc is 4.3  ns, 
close to previously published tumbling times for ubiquitin. The best 
τensemble is 2.0 ns, which is within 2.2 times faster than τc (indicated 
as a dashed line on the τensemble axis). According to Fig.  2, having 
τensemble within 2.2-fold of τc makes the effective averaging of dis-
tances a power of 3.8–4.9, contrary to usual approximations of NOE 
data that assume powers of either three or six
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large increase in intensity (orange to green in Fig. 4e) 
because of differences between the overall motion of the 
I13 side chain and the motion when open or closed. While 
the chi 1 angle of I13 shows a relatively equal distribution of 

the 60° and 300° rotamers, the open or closed conformations 
are more skewed towards one rotamer or the other. (Fig. 4g)

This population shuffling (Smith et al. 2015) of rota-
mer conformations makes the CB-CG2 order parameters 
for both the open and closed conformations higher than 

A B C

G

D

H I

E F

– –

Fig. 4  Hierarchical kinetics improve fit to NOE data. a In the hierar-
chical scheme, different transition rates are used between and within 
groups of ensemble members (here pincer open and closed). b Start-
ing from a single timescale (orange) slowing down the ubiquitin 
pincer mode (τpincer) improves correlation with NOE data (green). 
Subsequent optimization of the ensemble timescale (τensemble) further 
improves the correlation (purple). c Applying the same optimization 
protocol to 20,000 sets of randomized groups shows that the enhance-
ment from grouping by pincer state is very significant. d Experimen-
tal NOE intensities and theoretical NOE buildups fit to a single time-
scale. Nearly all NOEs highly overestimated by the model come from 
those between protons separated by 2–5 bonds (bond separations ≥ 6 
are black). Buildups illustrated in e and f are drawn with orange lines. 
Calculated NOEs show the summed fractional magnetization trans-
fer and observed are arbitrary units, with the limits of the graph set 
to three times the root mean square (RMS) value. e The I13 QG2-
HB buildup showed the greatest improvement after optimization of 

only τpincer (green), compared with the RMS-normalized experiment 
(black). It slightly worsens after optimization of τensemble (purple). f 
The K11 QD-QE buildup showed the greatest improvement after 
τensemble optimization. g The I13 shows more restricted sampling of 
chi angles when just open or closed conformations are considered. 
H) This is mirrored when looking at the I13 structures or CB-CG2 
order parameters  (S2). The side chains have their CA atoms aligned 
and the CB-CG2 bond shown with a stick representation. When τpincer 
is much greater than τc, the population weighted mean order param-
eter dominates in determining the NOE rate, which results in a net 
increase in NOE intensities after both timescales are optimized. The 
overall and mean values compare well to previously determined RDC 
(Fares et  al. 2009) and Lipari-Szabo (Lee et  al. 1999) order param-
eters. i The K11 CD-CE bond vector is more dynamic and shows a 
much smaller increase in mean order parameter, resulting in a net 
decrease in calculated NOE intensities
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the overall order parameter (Fig.  4h). In the EROS3 
ensemble, the motion of the I13 side chain is thus dis-
tinctly hierarchical, showing differences in both average 
structure and dynamics depending on whether it is open 
or closed. The CB-CG2 heavy atom order parameter 
is likely a good proxy for the order parameter between 
the beta hydrogen and the dynamically averaged posi-
tion of the gamma 2 methyl group hydrogens. When 
τpincer ≫ τc, the order parameter that determines the NOE 
rate is the population weighted mean order parameter of 
the open and closed states, which is much higher than 
overall order parameter. This helps explain why increas-
ing τpincer almost three orders of magnitude results in a 
greater increase in NOE intensity for this pair than oth-
ers (e.g. Fig. 4f). The difference in fast timescale mean 
order parameters (determining the NOE rate) and over-
all order parameters is largely in agreement with previ-
ously determined Lipari-Szabo (Lee et al. 1999) and RDC 
(Fares et al. 2009) order parameters, with the underly-
ing RDC data being used in refinement of the EROS3 
ensemble. Though the RDC order parameter is consistent 
with the ensemble, the experimentally determined Lipari-
Szabo parameter is greater than the mean order param-
eter derived from the EROS3 ensemble. This discrep-
ancy is mirrored in the NOE data, with the experimental 
buildup curve still exceeding the calculated one. The most 
straightforward ways to improve the match between the 
EROS3 ensemble and both datasets would be to either 
increase the population of the closed conformation or 
decrease the population of the 60° rotamer in the open 
conformation.

While increasing τpincer and decreasing τensemble led 
to a net increase in the NOE intensities for I13 QG2-
HB NOE, a net decrease in NOE intensities was also 
observed for many other pairs. The pair that caused the 
greatest improvement in correlation after reoptimization 
of τensemble was K11 QD-QE. This pair was already highly 
dynamic, with the heavy atom CD-CE order parameter 
being 0.13. Because the mean open/closed order param-
eter was not much higher (0.15), increasing τpincer only 
produced a very small increase in observed NOE inten-
sity. Reoptimization of τensemble from 2.0 to 1.4 ns caused 
a sizable reduction in NOE intensity below the original 
prediction. However, there is still a substantial overes-
timation of the NOE rate for not only K11 QD-QE, but 
also several other NOEs in the lysine side chain including 
QD-HG2 and QE-HG2. To improve the model, the kinet-
ics for the side chain could be made much faster. Alterna-
tively, the side chain order parameters could be decreased 
by increasing the overall mobility or again increasing the 
population of the closed state. Because the pincer mode 
was the largest amplitude motion and therefore the most 
likely to have a detectable kinetic dependence, we did not 

explore adding additional timescales for lower amplitude 
motions such as the ubiquitin peptide flip (Smith et al. 
2016), but instead turned to changing the composition of 
the ensemble itself.

Ensemble subselection produces better fits to NOE 
data

In addition to demonstrating that adding another timescale 
improved agreement with the NOE data, we also tested how 
much selecting a refined subset of ensemble members would 
improve goodness of fit. To do so, we ran a subselection 
optimization algorithm 100 times starting from different ran-
dom subsets of the EROS3 ensemble (see “Methods”). The 
algorithm produced 13–18 member subensembles and con-
sistently improved correlation with the NOE data over the 
full ensemble (Fig. 5a). By contrast, if random subensem-
bles having same size distribution were generated, the cor-
relations tended to be worse than the full ensemble. This 
decrease for the random subensembles may stem from the 
way the EROS3 ensemble was produced, in which 8-mem-
ber ensembles were collectively fit to NOE/RDC data, each 
therefore containing a distribution of states that together 
matched the data. By construction, the full 176-member 
ensemble would also show a similar overall distribution. 
However, the generation of small random subsets could very 
likely miss important states, resulting in lower correlations.

The best scoring subensemble  (Ru = 0.935) was found 
two out of 100 times by the algorithm and showed slightly 
lower fractional magnetization transfer than the full ensem-
ble (Fig. 5c). To determine whether the NOE optimized sub-
ensembles were truly better than random subensembles of 
the same size, we cross-validated with the same RDC dataset 
that was used to produce the EROS3 ensemble (Fig. 5c). 
Similar to what was observed for the NOEs (Fig. 5a), the 
random subensembles showed consistently worse reproduc-
tion of the RDCs than the full ensemble. However, the NOE 
selected subensembles showed better Q-factors for backbone 
RDCs than the random subensembles, indicating that appli-
cation of the Kinetic Ensemble approach better preserved 
the orientation/dynamics of backbone bond vectors. Interest-
ingly, the side chain RDCs showed the opposite trend, with 
the NOE-selected subensembles being worse than those that 
were randomly selected.

To determine why that might be the case, we examined 
how use of the NOE data influenced the ensemble side chain 
order parameters. We found that the 34 side chain methyls 
for which RDC data was available showed a number of large 
deviations from the full ensemble order parameters, particu-
larly towards rigidification (Fig. 5e). Notably, the overall 
order parameter for I13 CB-CG2 increased from 0.25 (con-
sistent with the RDC  S2, Fig. 4h) to 0.69 (slightly above the 
Lipari-Szabo  S2). While that improves agreement with the 
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NOE data, it worsens RDC reproduction for this methyl. 
By contrast, in the τensemble/τpincer model described above, 
where differing flexibility at two timescales was allowed, it 
was possible to fit both RDC and Lipari-Szabo/NOE data 
simultaneously.

Given the difference between models with hierarchical 
and non-hierarchical kinetics, we also examined the τensemble 
values derived from the different subensembles (Fig. 5f). 
While the random subensembles showed a broad distribu-
tion of timescales roughly centered on the full ensemble, 
the NOE selected subensembles had a much narrower dis-
tribution almost an order of magnitude faster. We previ-
ously hypothesized (Fig. 4h, i) that such faster kinetics and/
or reduction in  S2 would improve the fits to the NOE data 

for K11 QD-QE as well as many of the other NOEs coming 
from short bond separations. The NOE selected  S2 for K11 
QD-QE was also lower than the full ensemble (also shown 
in Fig. 5e), supporting the idea that changes in both τensemble 
and  S2 could play a role. However, because dynamics of the 
entire structure are forced to be on the same timescale, other 
parts are rigidified (like I13), possibly making the ensemble 
less representative of the overall flexibility in those regions. 
This highlights not only the exquisite sensitivity of NOEs to 
both protein flexibility and kinetics, which hasn’t been possi-
ble to analyze with previous theoretical approaches, but also 
the need to make further refinements to the kinetic schemes 
employed here to better interpret existing NOE datasets.

A B

C

E

D

– –

–

–

–

Fig. 5  NOE selected subensembles outperform random subensem-
bles. a 100 NOE selected subensembles (blue) produce better uncen-
tered correlations  (Ru) than the full ensemble (black), while randomly 
selected subensembles (red) fit less well than the full ensemble. 
An  Ru cutoff of 0.935 (gray line) was used to pick the top 31 scor-
ing ensembles shown in subsequent panels. b NOE data for the best 
selected subensemble. The best scoring subensemble shows slightly 
less overall magnetization transfer. The blue (NOE selected) and 
black (full ensemble, Fig.  4d) lines have slope  RMScalc/RMSobs. c 
Cross-validation with RDC data (lower Q-factors are better) shows 

that the random subensembles match the data less well than the full 
ensemble. However, ensembles selected by NOEs have better back-
bone N–H (dashed) and N–C′ (solid) RDC Q-factors than the random 
subensembles, while the side chain data (dotted) is worse. d Part of 
the decreased side chain performance likely comes from significant 
changes to overall side chain order parameters, with notable rigidi-
fication in a number of residues. Error bars indicate standard devia-
tions. e Those side chains are likely rigidified to counteract an almost 
tenfold decrease in the ensemble timescale
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Goodness of fit to NOE data is highly correlated 
with crystal structure resolution

Ubiquitin has been extensively studied by both X-ray crys-
tallography and NMR. To test the ability for the Kinetic 
Ensemble method to discern structural quality, we used it to 
compute buildup curves for 176 distinct full-length ubiquitin 
domain structures, including 115 X-ray crystal, 57 solution 
NMR, 2 solid-state NMR, and 2 cryo-EM structures (from 
64, 47, 2, and 1 PDB entries, respectively). Where multi-
ple alternate conformations existed in the PDB, they were 
treated as different ensemble members. For NMR structures, 
all ensemble members were included in the calculations. For 
this analysis we used crystal/cryo-EM structure resolution 
as a proxy for quality. In that regard, the goodness of fit to 

the NOE data showed a surprisingly high correlation with 
structural quality (Fig. 6).

Several PDB entries showed much better agreement with 
the NOE data relative to their resolution [5EDV (Lechtenberg 
et al. 2016) and 4ZUX (Morgan et al. 2016)]. The ubiquitin 
domains in these macromolecular complexes were solved via 
molecular replacement using crystal structures of ubiquitin 
with higher resolution, likely producing better coordinates 
than would otherwise have been possible. Similarly, several 
structures showing lower agreement with the NOE data also 
had more than half of their PDB quality metrics lower than 
the median values for other structures of similar resolution. 
When these structures are excluded the correlation coefficient 
improves to − 0.87.

While discrimination of structural quality over resolutions 
ranging 1.15–4.5 Å using NOE data could be anticipated, it 
was much more unexpected to find that significant correlations 
extended down to resolutions ranging 1.15–1.85 Å (p = 0.05) 
or 1.15–1.98 Å (p = 0.01). This indicates that NOEs likely have 
higher resolving capability than was previously appreciated. 
This high correlation was found despite all the potential con-
founding factors such as contacts within the crystal lattice, 
the presence of binding partners, covalent linkages, and dif-
ferences between the cryogenic temperatures where most of 
the crystal structures were solved and 308 K where the NOEs 
were determined. A similar analysis with RDC data yields 
lower correlations, both quantitatively and visually (Fig. S5). 
This suggests that NOE data is capable of not only ensemble 
determination, but also distinguishing high-quality average 
ground-state structures from those with slightly less quality, 
which is useful in high-resolution structural refinement.

Despite the clear correlation between NOE data and crystal 
structure resolution, NMR ensembles still fit the NOE data bet-
ter than the crystal structures. The top scoring NMR models 
included single structures optimized against NOEs, RDCs, and 
J-couplings (1D3Z (Cornilescu et al. 1998), and 2MJB (Malt-
sev et al. 2014)) as well as ensembles fit against multiple types 
of NMR data including NOEs (Cornilescu et al. 1998; Lange 
et al. 2008; Fenwick et al. 2011; Maltsev et al. 2014; Lindorff-
Larsen et al. 2005; Richter et al. 2007), RDCs (Cornilescu 
et al. 1998; Lange et al. 2008; Fenwick et al. 2011; Montalvao 
et al. 2012; Maltsev et al. 2014), Lipari-Szabo order param-
eters (Lindorff-Larsen et al. 2005; Richter et al. 2007), and 
scalar couplings (Cornilescu et al. 1998; Maltsev et al. 2014). 
(Table 1) Those ensembles included ERNST (Fenwick et al. 
2011) (2KOX), MUMO (Richter et al. 2007) (2NR2), DER 
(Lindorff-Larsen et al. 2005) (1XQQ), EROS (Lange et al. 
2008) (2K39), and 2LJ5 (Montalvao et al. 2012). However, 
combining the 22 ubiquitin domains coming from crystal 
structures with resolutions 1.15-1.74 Å (Table S1) produces an 
ensemble whose correlation  (Ru = 0.915) exceeds all but four 
of the NMR ensembles (EROS3, ERNST, MUMO, and DER).

–

–

Fig. 6  NOE data agreement is highly correlated with crystal struc-
ture resolution. 117 ubiquitin domains from 65 different crystal/cryo-
EM structures were used to determine their agreement with the NOE 
buildup data. Across the full range of resolutions (1.15–4.54 Å), the 
Pearson correlation coefficient between the resolution and agreement 
with NOE data is − 0.68. Several structures show unexpectedly high 
correlations (likely because of molecular replacement into a low-res-
olution map), or low correlation (because of unusual ubiquitin con-
formations or poor refinement). When the gray points are removed, 
the Pearson correlation improves to − 0.87. Both Pearson correla-
tion coefficients are statistically significant (p < 10−16). The Pearson 
correlation continues to be statistically significant for structures less 
than 2 Å (p = 0.01, blue) or 1.85 Å (p = 0.05, red), suggesting that 
NOE data contains higher resolution data than previously thought. 
When the crystal structures are combined to create a more dynamic 
ensemble, starting with those at the best resolution, the agreement 
increases (green line) and reaches a maximum (green point) when 
all structures  1.74 Å and better are included. This crystal ensemble 
approaches the best published NMR ensembles to-date in fitting to 
the NOE data
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Discussion

Here we have demonstrated a new approach for modeling 
NOE data which overcomes several shortcomings in the 
way previous methods have handled protein motion. First, 
the Kinetic Ensemble approach directly captures the effect 
that angular motion has on attenuating NOE rates. For pro-
tons separated by 2–4 bonds whose interatomic distances 
are restricted by covalent geometry, this serves as a sensi-
tive probe of angular dynamics, either in the backbone (i.e. 
between amide and alpha hydrogens), or along side chains. 
Second, we have shown that the usual assumptions of dis-
tance averaging as a power of three or six are only fully 
valid for motions occurring at least two orders of magnitude 
slower or faster than the overall tumbling time. In all models 
we used to fit the experimental data, at least one of the over-
all exchange timescales was within two orders of magnitude 
of the tumbling time, indicating that this assumption should 
be revisited.

As stated above, this study particularly highlights the 
sensitivity of NOE data to the timescales of angular and 
through-space motion. The NOE buildup data, when inter-
preted in the context of a reasonably accurate structural 
model, is capable of recovering the overall tumbling time 
with a high degree of accuracy. Furthermore, NOE data can 
be used to validate hypotheses about the timescales of par-
ticular motions, revealing kinetics up to and potentially more 
than an order of magnitude slower than molecular tumbling.

In the context of structure determination, the quantitative 
approach used here to directly calculate spectral intensities 
shows a surprisingly high correspondence between fit to the 
NOE data and crystal structure resolution. This relationship 

holds up despite the substantial number of potential con-
founding factors that make crystal structures deviate from 
the solution state of a molecule. This suggests that NOE 
data may contain considerably more information than previ-
ously appreciated about the high-precision structural details 
typically found in the best resolution crystal structures. The 
Kinetic Ensemble approach could thus be used to help 
resolve outstanding questions about the similarity between 
dynamics in solution and other states like a crystal lattice.

When the ubiquitin ensemble was either split into a 
kinetic hierarchy or trimmed down to a subset of the full 
ensemble, sizable changes to flexibility and kinetics were 
observed after Kinetic Ensemble optimization. This practical 
result is in agreement with what the theory suggests, namely 
that NOE data is very sensitive to both motional amplitudes 
and kinetics. This then implies that when interpreting NOE 
datasets, it is important to correctly model structure, motion, 
and kinetics. An inaccuracy in any of those three properties 
will necessarily have an adverse effect on the other two. A 
NOE-based structural refinement method that ignores any of 
those properties is making implicit assumptions which could 
have a sizable impact on the properties it does consider.

One of the most immediately useful applications of the 
Kinetic Ensemble approach is to augment existing NMR 
ensemble calculation methods to build more quantitative 
models of protein structure and motion. Unlike the eNOE 
approach, only a single mixing time is required, making 
it applicable to all standard NOE datasets. Starting with 
a large pool of candidate structures generated using tradi-
tional and/or MD-based refinement methods, the Kinetic 
Ensemble approach can be used to determine optimal sub-
sets (Rangan et al. 2018; Bottaro and Lindorff-Larsen 

Table 1  Top scoring NMR 
ensembles

Ru PDB ID Chain Models Ligand Derived 
from

Year PDB First Author

0.921 6V5D A 176  2019 de Groot
0.919 2KOX A 640 2009 Salvatella (Fenwick et al. 2011)
0.917 2NR2 A 144 2006 Vendruscolo (Richter et al. 2007)
0.916 1XQQ A 128 2004 Dobson (Lindorff-Larsen et al. 2005)
0.914 2RR9 B 20 tUIMs Unknown 2010 Shirakawa
0.914 2RR9 A 20 tUIMs Unknown 2010 Shirakawa
0.914 2K39 A 116 2008 de Groot (Lange et al. 2008)
0.911 2LVQ B 24 gp78CUE 1D3Z 2012 Das (Liu et al. 2012)
0.910 2LVQ A 24 gp78CUE 1D3Z 2012 Das (Liu et al. 2012)
0.909 2LVO A 20 gp78CUE 1D3Z 2012 Das (Liu et al. 2012)
0.909 2LJ5 A 301 2011 Vendruscolo (Montalvao et al. 2012)
0.909 2LVP A 20 gp78CUE 1D3Z 2012 Das (Liu et al. 2012)
0.908 1D3Z A 10 1999 Bax (Cornilescu et al. 1998)
0.906 2LVP B 20 gp78CUE 1D3Z 2012 Das (Liu et al. 2012)
0.905 2MJB A 20 2014 Bax (Maltsev et al. 2014)
0.904 2Z59 B 10 Rpn13 1D3Z 2007 Walters (Schreiner et al. 2008)
0.903 2BGF B 10 ubiquitin 1D3Z 2004 Bonvin (van Dijk et al. 2005)
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2018) that collectively reflect not only the structure, 
but also the dynamics inherent in the NOE data. This 
approach can also be used to evaluate hypotheses about 
the relative rates of motions suggested by molecular 
dynamics simulations.

Furthermore, it is becoming increasingly common to 
determine structures with a combination of NOE and RDC 
data. These methods report on motion at different time-
scales and this study highlights the potential for them to 
conflict with one another if there is a substantial amount 
of motion slower than molecular tumbling. If there is suf-
ficient RDC data to extract dynamical order parameters, 
incorporation of multiple exchange rates provides a means 
to reconcile the data from these two experiments.

For the quantification of protein dynamics, this approach 
would be particularly helpful for loop regions, where adja-
cent protons along the backbone or side chain could be used 
to directly probe loop flexibility. This would help discern 
between true dynamics and model uncertainty due to the lower 
number of medium- and long-range restraints often found in 
these regions. Furthermore, this could be used to quantify 
the motion of sidechains that don’t have a methyl group, such 
polar and charged amino acids critical for catalysis.

Work is currently underway to extend the Kinetic 
Ensemble approach to allow gradient-based optimization 
of atomic coordinates in molecular dynamics simula-
tions. Beyond NOE data, the approach could be used to 
directly model not only the heteronuclear  T1/T2 times used 
in fitting Lipari-Szabo order parameters, but also 1H  T1/
T2 times, which are typically more difficult to interpret 
because they depend so much on the large network of pro-
ton dipole–dipole interactions. We recently applied the 
Kinetic Ensemble approach to structurally interpret solid-
state proton relaxation-dispersion data (Rovó et al. 2019), 
which is also sensitive to the proton interaction network. 
Furthermore, it could be used to better model other kineti-
cally sensitive phenomena, like cross-correlated relaxation 
(CCR), or incorporate less timescale dependent data like 
residual dipolar couplings.

Methods

Ubiquitin sample preparation

The cDNA encoding Ubiquitin was expressed in Escheri-
chia coli and the purification protocols were adopted as 
described earlier (Lazar et al. 1997). Isotopically-labeled 
(15N, or 15N/13C) and unlabeled Ubiquitin were produced 
following the same protocol. 15NH4Cl and  [13C]-glucose 
(Cambridge Isotope Laboratories) were used as the sole 
sources of nitrogen and carbon, respectively.

NMR spectroscopy

The purified ubiquitin samples (15N, 15N/13C, or unlabeled) 
were used at a concentration of ~ 3 mM in 50 mM sodium 
phosphate (pH 6.5) containing 100 mM NaCl and 0.05% 
(w/v) sodium azide. All NMR experiments were carried 
out at 308 K on a Bruker Avance 900 MHz spectrometer 
with cryogenic probe. The experiments used for complete 
resonance assignment were as follows: 3D HNCACB, 3D 
HCCH-TOCSY, 3D 15N-edited NOESY-HSQC, and 3D 
13C-edited NOESY-HSQC (Bax and Grzesiek 1993). A 
series of 2D  [1H-1H]-NOESY experiments with mixing 
times varying from 5 to 500 ms (equally spaced intervals 
of 15 ms) were recoded with 300 and 1024 complex points 
along  t1 and  t2 dimensions, respectively. The same experi-
ments with NOE mixing times of 80 ms, 155 ms, 215 ms, 
305 ms, 410 ms and 500 ms were repeated for error calcu-
lation. All NMR data were processed using NMRPipe and 
analyzed with nmrDraw (Delaglio et al. 1995) and CARA 
(Keller 2004). CYANA (Güntert and Buchner 2015) was 
used for stereospecific assignment of 3D NOESY cross 
peaks. 3D NOE assignments were manually transferred 
to the 2D experiments and corresponding intensities were 
determined as a function of NOE mixing time to generate 
the NOE buildup curves.

Calculation of correlation functions and spectral 
densities with kinetic ensemble approach

The Kinetic Ensemble method starts with a matrix of tran-
sition rates between structures within an ensemble to 
directly determine correlation functions and spectral den-
sities, from which NMR observables are calculated. An 
overview of the slower numerical method and a faster ana-
lytical solution is shown in Fig. S1. In a transition rate 
matrix, Q, the rate of a transition from state i to state j is 
represented by element qij, with i being the row index and 
j being the column index. The diagonal elements, qii, are 
defined qii = −

∑
j≠i

qij . The probabilities, pij(τ), of transition-

ing from state i to state j after a given lag time, τ, can be 
calculated using the matrix equation, P(�) = e�Q . If a sys-
tem is at a given state (si) at time t, and state (sj) at time 
t + τ, then one can define a correlation function 
C(�) =

∑
i,j

�ipij(�)cij , where πi is the equilibrium population 

of a state and cij represents the value of a function, c(si,sj), 
that gives the strength of the correlation between two dif-
ferent states. NMR observables can then be quantified by 
evaluating c(si,sj) as shown below.

In the case of NOE calculations, si is defined by the 
vector �⃗ri , connecting two nuclei in state i. Given scalar xi, 
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yi, and zi components of that vector and the internuclear 
distance ri, the cartesian dipole interaction tensor, Di, is 
defined:

The strength of the correlation for two states 
(dipole–dipole interaction) can then be calculated as follows:

To aid in computational efficiency, the Di tensor can be 
recast as a vector:

Such that the normalized trace of the matrix product is 
equal to the dot product of the vectors:

For the present work, an important property of both the 
matrix and vector representations of the interaction tensor 
is that the average value of 1

6
tr
(
DiDj

)
 or ��⃗di ⋅ ��⃗dj . enumerated 

over two sets of states is equal to applying the same opera-
tion once to the average tensor for each set:

This property, which is a straightforward extension of dis-
tributivity, enables much more rapid calculation of the cor-
relation function exponential prefactors. It also makes gradi-
ent-based optimization computationally feasible, where the 
goodness of fit of a whole ensemble to NOE buildup data is 
differentiated with respect to kinetic or structural parameters.

The transition probability matrix, P(�) = e�Q , can be cal-
culated by diagonalization of the matrix, Q = V �V−1 , 
where V is a column matrix of the eigenvectors and Λ is a 
diagonal matrix with the corresponding eigenvalues. The 
exponential can then be evaluated P(�) = Ve��V−1 . When 
incorporated into the internal correlation function, 
CI(�) =

∑
i,j

�ipij(�)cij , this produces a multi-exponential 

decay, CI(�) =
∑
i

aie
�i� , with decay rates, −λi, coming from 

the indidual eigenvalues. The exponential prefactors, ai, 
associated with each rate can be calculated 
ai =

∑
j
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column i of V  . With regularly structured transition rate 
matrices, as used in this work, the eigenvalues are very often 
degenerate, and the exponential prefactors can be summed 
over the eigenvectors associated with a given eigenvalue. If 
 Aλ is the square matrix formed by multiplying the columns 
of V by the rows of V−1 corresponding to the given eigen-
value, and Π is a diagonal matrix containing the equilibrium 
state populations, then the exponential prefactor can be cal-
culated via the matrix operation, a� =

(
�A�

)
⋅ C . In that 

formula, standard matrix multiplication is used with Π and 
 Aλ, from which the result is combined with C through the 
dot product operating over the individual matrix elements.

The rate matrices used in this work produce  Aλ matrices 
with recognizable patterns (Fig. S2c, g). These can be 
expressed as a linear combination of matrices,  Gi. The G 
matrices are structured such that the rows and columns can 
be reordered to create a block matrix where all rows and 
columns contain only a single block with nonzero elements. 
Even without reordering, this is true for all matrices shown 
in Fig. S2h except for  G3, which requires reordering. The 
values of the G matrices are set such that all rows sum to 1. 
Because the group matrices separate states into blocks, it can 

be shown that 
�
𝛱Gi

�
⋅ C = gi =

Ni∑
j=1

Nj

N

�����
1

Nj

Nj∑
k=1

����⃗dijk

�����

2

 , where N 

is the number of states, Ni is the number of nonzero blocks 
in matrix  Gi, Nj is the number of states in block j, and ����⃗dijk is 
tensor k of block j of group i. Examples of this equality are 
shown in Fig. S2d, h. The exponential prefactors can then be 
rewritten as follows:

where NG is the number of group matrices and kλi is the coef-
ficient associated with a given group matrix (usually a small 
positive or negative integer). Those coefficients are algorith-
mically determined from the structure of the rate matrix. 
While eigendecomposition of the rate matrices and construc-
tion of the corresponding  Aλ and  Gi matrices can be helpful 
in determining how this calculation should be conducted 
and validating that it is done correctly, in a production situ-
ation this is unnecessary, and the last expression of the above 
equation can be evaluated directly. This enables a dramatic 
speedup in the calculations, as eigendecomposition/matrix 
multiplication has a running time of approximately O(s3) and 
calculating all cij elements is O(s2), where s is the number of 
states in the transition rate matrix (i.e. the number of struc-
tures in the ensemble). In contrast, this method has a compu-
tational complexity of O(sl), where l is the number of unique 
eigenvalues. This enables the method to scale to very large 
ensembles. The largest used in this method is 176 mem-
bers. As discussed below, for methyl–methyl interactions 

a𝜆 =

NG∑
i=1

k𝜆i
(
𝛱Gi

)
⋅ C =

NG∑
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NG∑
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N

||||||
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the ensemble is expanded to 1584 members (9 × 176), which 
would be computationally prohibitive with O(s3) scaling.

Once all  aλ coefficients are determined, the spectral den-
sity function can be directly evaluated without first deter-
mining the correlation function. Taking into account molec-
ular tumbling, assumed to be isotropic, the rotational 
correlation function is multiplied by the internal correlation 
function to give the full  cor relation function 
C(�) = e−�∕�cCI(�) = e−�∕�c

∑
i

aie
�i� . This expression can be 

simplified using modified eigenvalues, ��
i
= �i − 1∕�c , mak-

ing the final correlation function C(�) =
∑
i

aie
��
i
� . Fourier 

transformation of that gives the spectral density function, 
J(�) = −2

∑
i

ai�
�
i
∕
�
��
i

2
+ �2

�
 . By making the substitution, 

��
i
= −1∕��

i
 , that expression can be rearranged to 

J(�) = 2
∑
i

ai�
�
i
∕
�
1 + �2��2

i

�
 , which is a generalization of the 

extended model free spectral density. In the regime where 
J(0) dominates, J(0) = 2

∑
i

ai�
�
i
 , and the NOE cross relaxa-

tion rate is directly proportional to the time constants ( �′
i
 ) 

associated with molecular motions and the ai coefficients. 
One of the key advancements made in tinetic Ensemble 
method is an efficient analytical method to rigorously calcu-
late J(�) from a temporally partitioned structural ensemble. 
The magnitude of the coefficients ( ai ) are determined by the 
extent of additional orientational dynamics arising from 
motions at a given timescale, convoluted with simultaneous 
changes in internuclear distances.

Methyl and aromatic group rotation

For computational simplicity, many structural modeling 
programs do not explicitly sample symmetrical hydrogen 
arrangements on methyl or aromatic groups. However, 
these structural rearrangements can play a significant role 
in observed NOE data. These motions can be addressed 
through either explicit modeling of the rotations or the 
use of pseudoatoms (Koning et al. 1990; Liu et al. 1992). 
In this work, we enumerate these rotations by expanding 
the ensemble to include relabeled methyl and aromatic 
group atoms and using an expanded transition rate matrix. 
For a methyl group, the algorithm does the equivalent of 
tripling the number of ensemble members and then rela-
beling the methyl atoms such that they hop between three 
possible conformations. The kinetics of the rotations are 
modelled using 2 × 2 (aromatic) or 3 × 3 (methyl) transition 
rate matrices,  Qr, in which individual transition rates are 
set to 1/(2τaromatic) or 1/(3τmethyl), respectively. Because the 
rotations are treated as being kinetically independent from 
other protein motions, the overall transition rate matrix, 

 Qo, is calculated using the Kronecker sum of the input and 
rotation rate matrices,  Qo = Q ⊕ Qr. Interactions between 
atoms on two different rotation groups are handled by 
additional enumeration. In the present work τaromatic was 
fixed at 100 µs and τmethyl was fixed at 1 ps. The corre-
lation with NOE data plateaus around those values (Fig. 
S3), which are also consistent with previously determined 
timescales of 1 µs–100 ms for aromatic groups (Weininger 
et al. 2014) and 1–100 ps for methyl groups (Xue et al. 
2007).

Calculating spectral intensities

Where necessary, input structures and ensembles were 
protonated with Reduce (Word et  al. 1999). No pseu-
doatoms were used in the calculations. Spectral densities 
for all proton dipole–dipole interactions were calculated 
as described above, including those between equivalent 
atoms in methyl/aromatic groups. Using those spectral 
densities, the relaxation matrix, R, was calculated using 
the well-established Solomon equations (Brüschweiler and 
Case 1994). Fractional magnetization transfer between 
protons for a given mixing time, τm, was calculated using 
the matrix exponential etmR . Theoretical NOE intensities 
between sets of indistinguishable nuclei were determined 
by summing blocks of the resulting matrix. Where appli-
cable in the Results section, we refer to this summed 
fractional magnetization transfer using pseudoatom (Q) 
notation. For crystal structures where there were multi-
ple alternate conformations of atoms available, separate 
models were created corresponding to each of the alter-
nate conformations, and the structure was scored as an 
ensemble.

Evaluating goodness of fit

NOE intensities calculated using the Kinetic Ensemble 
method are typically expressed as fractional magnetization 
transfer from one nucleus to another. Because the appropri-
ate scaling factor between those values and the experimen-
tally measured NOE intensities is not known a priori, we use 
an uncentered correlation coefficient, Ru , to determine the 
goodness of fit. In the uncentered form, the mean values of 
each set of data are set to zero such that the formula reduces 
to Ru = xy∕

√
x2y2 . This has the desired effect of penalizing 

deviations from a zero y-intercept. However, it is important 
to note that the uncentered correlation coefficient is higher 
than the ordinary Pearson correlation coefficient.
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Optimization of timescales

Once the correlation function exponential prefactors ( ai ) 
have been calculated for all of the dipole–dipole interac-
tions in a given ensemble, the overall exchange rates ( ki ) can 
be optimized independently of those prefactors. Depending 
on how a rate matrix is constructed, the eigenvalues ( �i ) 
represent either a single exchange timescale or multiple 
exchange timescales. For instance, in Fig. S2a, b, the unique 
eigenvalues each reflect distinct rates, with �1 = − ks and 
�2 = �3 = − kf . However, in Fig. S2e, f, one of the unique 
eigenvalues represents the sum of the exchange rates, with 
�3 = − (ks + kf) . This happens when the rate matrix is con-
structed from the Kronecker sum of other rate matrices, as 
is done for methyl and aromatic group rotation.

Optimization of kinetic coordinates requires determin-
ing the gradient of the goodness of fit with respect to the 
coordinates, �Ru∕��i in the case of the timescales. The most 
computationally challenging aspect of that calculation is the 
derivative of e�mR , where �m is the NOE mixing time and R 
is the dipole–dipole relaxation matrix (Yip and Case 1989). 
The computation of this derivative has been previously 
described (Yip and Case 1989; Jennrich and Bright 1976; 
Kalbfleisch and Lawless 1985), and involves diagonalization 
of R and the determination of the derivative of individual 
elements of R with respect to either the kinetic coordinates. 
The currently implemented version of the algorithm uses the 
earlier matrix form of the derivative (Jennrich and Bright 
1976; Kalbfleisch and Lawless 1985), which does not take 
advantage of the sparsity of detectable NOE cross peaks 
that can significantly reduce the computational cost (Yip 
and Case 1989). That optimization will be incorporated in 
future versions of the algorithm. Using Ru

(
�i

)
 and �Ru∕��i , 

the timescales are then numerically optimized with the 
L-BFGS-B algorithm.

Current assumptions

In its current form, the Kinetic Ensemble approach assumes 
the following have a negligible effect: non-uniform initial 
magnetization, anisotropic molecular tumbling, depend-
ence of molecular tumbling on internal motions, and solvent 
hydrogen exchange (e.g. for amide or hydroxyl-protons). 
The treatment of many of these will be addressed in future 
work. In that regard, adapting complementary ideas from the 
eNOE approach to determine initial magnetization would be 
particularly helpful.

Ensemble subselection

Subensembles were selected from the EROS3 ensemble 
starting from random ensembles in which each member 
was either included or excluded with an even probability, 

resulting in an initial size of approximately 88 members. In 
successive rounds each of the 176 members had its status as 
included or excluded swapped one at a time, after which τc 
and τensemble were optimized using gradient based minimiza-
tion from their previously optimal values. After evaluating 
the 176 swaps, the one resulting in the greatest improvement 
in  Ru was accepted. Further rounds of swaps were attempted 
in the same way until swapping no longer improved the fit 
to experimental data. To construct the random reference 
ensembles shown in red on Fig. 5, random subensembles 
were chosen with the same distribution of sizes as the NOE 
selected ensembles.
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