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Abstract. Analysis of extended molecular dynamics (MD) simulations of several proteins in aquous
solutions reveals that it is possible to separate the configurational space into two subspaces: (1) an
‘essential’ subspace containing only a few degrees of freedom in which anharmonic motion occurs that
comprises most of the positional fluctuations; and (2) the remaining space in which the motion has a
narrow Gaussian distribution and which can be considered as ‘physically constrained’.
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1. Introduction

FunctionLll proteins are generally stable mechanical constructs that allow certain
types of internal motions to enable their biological function. Functional internal
motions may be subtle and involve complex correlations between atomic motions,
but their nature is inherent in the structure and interactions within the molecule.
It is a challenge to derive such motions from the molecular structure and interac-
tions, to identify their functional role, and to reduce the complex protein dynamics
to its essential degrees of freedom.

In 1993 we developed a new approach and methodology to identify an ‘essential’
subspace in a protein configurational space [1]. In this method we analyse the
correlations between atomic positional fluctuations and diagonalize the covariance
matrix of atomic displacements. We find that most of the positional fluctuations
are concentrated in correlated motions in a subspace of only a few degrees of
freedom (not more than 1%), while all other degrees of freedom represent much
less important, basically independent, Gaussian fluctuations orthogonal to the
essential subspace. In our treatment we do not include atomic masses and we do
not require any harmonicity for the potential energy. We showed [1] that, if in
the configurational space ideal or approximate linear constraints for the motions
are present, we are always able, with this method, to identify them and define the
complementary subspace (essential subspace) where all the relevant motions
should be concentrated. We also do not require a complete equilibration of the
system. It is sufficient to have a trajectory that is extended enough to equilibrate
the near-constraint subspace and to produce motions in the essential subspace that
are large compared to the near constraints fluctuations. Since the near-constraints
coordinates have rather short relaxation times and fluctuation ranges, this is usually
accomplished within a reasonable simulation time (trajectories within 1 ns).

In this paper we show, in a more general way, the meaning of diagonalizing the
covariance matrix. We show the basic results obtained up to now and we describe
the new developments we are working on.
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2. Theory

In an earlier publication [1] we described the theory which forms the basis of the
essential degrees of freedom method. The standard procedure for analysis is as
follows: First a simulation of several hundreds of picoseconds is performed. From
the trajectory obtained, the overall translational and rotational motion is elimin-
ated. Next a covariance matrix of the atomic displacements with respect to the
average positions is built:

C = cov(Ax) = (Ax Q Ax) ¢5)
Where & denotes a tensor product and Ax is given as:
Ax =x — (x) (2)

By diagonalizing C we obtain a set of eigenvectors (we choose to sort the
eigenvectors in order of decreasing eigenvalue) of which the first few define a
subspace in which all the essential motions of the protein appear to occur. The
eigenvalues are mean square displacements along the corresponding eigenvector.
We now will describe a more general definition of the meaning of the eigenvectors
of thc covariance matrix €. We will show that the first n eigenvectors define
the best fitted hyperplane through the density of the probability distribution in
configurational space. This implies that through the density in this space no set of
orthonormal vectors can be defined in such a way that one of them has a positional
fluctuation exeeding that of the first eigenvector. This means that the first eigen-
value is the maximum possible positional fluctuation along a single direction which
was actually sampled. Alternatively, the total positional fluctuation in the (N — 1)-
dimensional plane (where N is the total number of dimensions of the system)
orthogonal to this eigenvector is the minimum possible one. Figure 1 illustrates
this for a two-dimensional case.

In general, in an N-dimensional space, the subspace orthogonal to the first n
eigenvectors has the minimum possible positional fluctuation in respect of the
positional fluctuations of any other N — n-dimensional subspace. We define the
positional fluctuation in an N — n-dimensional subspace as:

N
oRn= 2 (=) v )
{=n+1
where {v,} is any set of N orthornormal vectors.

If we can prove that the vector along which the smallest positional fluctuation
is observed, is the last eigenvector, then this can recursively be applied to the
complementary N — 1 dimensional subspace, and so on. The positional fluctuation
of vy is:

ot ={(x— ) va]" “4)
vy can always be written as a linear combination of eigenvectors m;:
N
Ny = 2 AN ®
i=1

Now o {y-1) can be written as:
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Fig. 1. A two dimensional example of essential dynamics analysis.
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Since
(Ax-n)(Ax ) =0 VI+T
and

((Ax-m;)*) = A; (A is the eigenvalue corresponding to ;)

this can be written as:

-

We can now write the following inequality:
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BnAn+t Al 2 alv= o= akwAnF Ay 2 aky (11)
i=1 i=1

And since
N

and

(N=D)

at=1-a%n (13)
i=1

this can be rewritten as
0-12VN)\N + /\1(1 - a12VN) = 0'% = (YIZVN/\N + )\(N—l)(l - C(]Z\/N) (14)

Since we want to find a minimum for a% and its value lies between two boun-
daries, we must determine the minimal values of these boundaries. We can plot
both boundaries as a function of a%, (Figure 2) using the following properties:

A=0 (15)
withi=1,2,...,N

Aw-1) > An (16)
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0<ain<1 17)
The upper boundary (as a function of a%y) looks as follows:
yi(ain) = adn(An — A1) + Ay (18)
and the lower boundary:
ya(ain) = ann(An = Aw-1) + Av-1) (19)

As can be seen from Figure 2 o1 has a minimum for ai, = 1, which means
that

VN =MN ’ (20)

and

This means that the vector for which a minimum mean square positional fluctu-
ation is found, is the last eigenvector. This minimum value is exactly the eigenvalue
corresponding to that eigenvector.

3. Results and Discussion

Up to now every protein to which our method was applied showed a very low
dimensional essential subspace (which was always defined by less then ten eigen-
vectors). The kind of structural transitions involved in the essential motions are
always connected to possible biological behaviour of the proteins. In lysozyme [1]
we found a motion that opened the active site cavity of the enzyme described by
the first eigenvector with all the other ‘essential’ ones involving smaller motions
also in the active site region. In thermolysin (manuscript in preparation, in collab-
oration with D. van Aalten) we found two essential eigenvectors producing clear
hinge bending motions between the two domains that enclosed the active site.
This motion was already postulated on the basis of crystallographic data. Analysis
of haloalkane dehalogenase (manuscript in preparation) revealed a possible en-
trance or exit of substrate or products. It is interesting to note that the motion
along the first eigenvector also involved a tunnel that, on the basis of crystallo-
graphic data [2] was supposed to be the entrance as well as the exit. Both tunnels
opened and closed in an anticorrelated way. Also the essential eigenvectors of
HPr (manuscript in preparation, in collaboration with N. van Nuland, R. Scheek
and G. Robillard) of which several structures based on NMR data were available
[3] showed a hinge bending (opening and closing) motion between two a-helices
enclosing the biological active region of the protein. In Figure 3 two superimposed
structures from two (most distant) positions along the first eigenvector of HPr are
shown. The hinge bending motion involving both helices can clearly be seen.
Figure 4 shows the C,-eigenvalue curves from three proteins, lysozyme, dehalogen-
ase and HPr. It is evident that after the first few eigenvalues the remaining ones
represent negligible motions for all three proteins. We found [1] that the essential
eigenvectors derived from the all atoms covariance matrix produced backbone
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Fig. 3. Stereoview of the closed structure (A) and the open structure (B) of HPr derived from the
displacement along the first eigenvector.

motions that were identical to the motions obtained from the essential C,-eigenvec-
tors.

In Figure 5 we show the projectons of three HPr trajectories (starting from
three different NMR-structures) on the three planes defined by the first three C,-
eigenvectors, and one plane defined by two near-constraints eigenvectors (vectors
20 and 50). In the three ‘essential planes’ the density is far from being equilibrated
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Fig. 4. Eigenvalues of lysozyme, dehalogenase and HPr of C,-analysis (see text).

trajectories on these essential planes span very different regions (although always
in contact). On the contrary, in the near constraints plane the three trajectories

fully overlap with the same very narrow region, indicating a full equilibration and
a stable near-constraint behaviour.

4. Conclusions

The essential degrees of feedom method has, up till now, proved to be useful for
detecting protein dynamical behaviour that is related to biological functions. This
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Fig. 5. Three trajectories of HPr projected on four different planes (see text).

of different (but related) proteins. At this moment our main goal is the investi-
gation of the essential subspace of HPr. The geometrical definition of such sub-
space gives us the capability to sample this subspace in a very efficient way. This
can be accomplished by either moving the system along one of the essential
eigenvectors or using more complex pathways that are not necessarily linear. If a
sufficient sampling can be obtained this should produce all the configurations that
are involved in the biological activity. This gives the possibility to predict several

properties of the protein and also can give insight into the consequences of
mutations.
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