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ABSTRACT: The diphenyl-pyrazole compound anle138b is a known
inhibitor of oligomeric aggregate formation in vitro and in vivo.
Therefore, anle138b is considered a promising drug candidate to
beneficially interfere with neurodegenerative processes causing
devastating pathologies in humans. The atomistic details of the
aggregation inhibition mechanism, however, are to date unknown since
the ensemble of small nonfibrillar aggregates is structurally
heterogeneous and inaccessible to direct structural characterization.
Here, we set out to elucidate anle138b’s mode of action using all-atom
molecular dynamics simulations on the multi-microsecond time scale.
By comparing simulations of dimeric to tetrameric aggregates from fragments of four amyloidogenic proteins (Aβ, hTau40,
hIAPP, and Sup35N) in the presence and absence of anle138b, we show that the compound reduces the overall number of
intermolecular hydrogen bonds, disfavors the sampling of the aggregated state, and remodels the conformational distributions
within the small oligomeric peptide aggregates. Most notably, anle138b preferentially interacts with the disordered structure
ensemble via its pyrazole moiety, thereby effectively blocking interpeptide main chain interactions and impeding the spontaneous
formation of ordered β-sheet structures, in particular those with out-of-register antiparallel β-strands. The structurally very similar
compound anle234b was previously identified as inactive by in vitro experiments. Here, we show that anle234b has no significant
effect on the aggregation process in terms of reducing the β-structure content. Moreover, we demonstrate that the hydrogen
bonding capabilities are autoinhibited due to steric effects imposed by the molecular geometry of anle234b and thereby indirectly
confirm the proposed inhibitory mechanism of anle138b. We anticipate that the prominent binding of anle138b to partially
disordered and dynamical aggregate structures is a generic basis for anle138b’s ability to suppress toxic oligomer formation in a
wide range of amyloidogenic peptides and proteins.
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■ INTRODUCTION

Providing treatment for neurodegenerative conditions such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD) has
been a longstanding quest for fundamental research in
academia and pharmaceutical industry as these types of
neurological disorders are rapidly becoming a more prevalent
cause of death in an aging population.1 Currently, no therapies
exist that can cure or prevent the irreversible disease pattern in
humans and several clinical trials were marked by setbacks in
the past.2−4

The common defining characteristics in proteopathic neuro-
degenerative disorders are the misfolding and aggregation of
proteins at the molecular level leading to an abnormal
accumulation of toxic species and insoluble fibrillar mass in
intra- and extracellular space. This process ultimately results in
degeneration and death of neuronal cells.5−8 At present, the
majority of research publications identifies soluble nonfibrillar
oligomers as the pivotal agent and primary cause of cytotoxicity
for a number of disease-related peptides and proteins.5,6,9−12

Inhibition of pathological protein aggregation by targeting
diffusible, oligomeric forms and remodeling of toxic con-
formations by small molecule compounds therefore has been
one of many different disease modifying strategies investigated.
These treatment strategies aim to reverse, stop or slow down
the progression of the diseases in vitro, in cell line models and
in preclinical animal studies.13−19

Although accounts of biophysical and biochemical properties
obtained by direct experimental observation20−24 and efforts to
determine molecular structures25−28 of oligomeric, neuro-
inflammatory aggregates are accumulating, the picture remains
incomplete. The principal structure−neurotoxicity relationship,
and whether it is commonly shared by toxic oligomers of
different primary sequences, is one of the pressing open
questions. Resolving the structures of amyloidogenic peptide
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and protein oligomers in solution or in the membrane
environment is still a fundamental challenge and proves to be
extremely difficult due to the transient and disordered nature of
the conformational states populated during the lag phase of
amyloid formation.8,29 Moreover, essential atomistic details on
interaction modes of small molecule inhibitors with the
nonfibrillar oligomers are lacking, yet they are of utmost
importance for a rational drug development strategy.17,18,30,31

Advances of molecular dynamics (MD) simulation methods
led to atomic-level insight into the conformational dynamics of
disordered proteins and revealed important mechanistic steps
of peptide self-aggregation.31−40 MD simulations have also
been used to study potent small molecule inhibitors that target

oligomeric intermediates and attenuate toxicity,30,35 for
example, the green tea polyphenol epigallocatechin-3-gallate
(EGCG)19,41−44 or the polyolic compound scyllo-inositol.43−46

EGCG and scyllo-inositol served as platforms for proof of
principle investigations,30 giving new insights into molecular
mechanisms of small molecule binding affinity and its
specificity,47−49 as well as structural implications for inter-
actions of inhibitory small molecules with low-molecular weight
oligomers.43,48,49

Recently, the promising drug candidate anle138b [5-(1,3-
benzodioxol-5-yl)-3-(3-bromophenyl)-1H-pyrazole] with high
central nervous system bioavailability and low toxicity50,51 was
discovered.51 Anle138b was shown to bind peptide aggregates

Figure 1. Anle138b conformers and solvation free energies. (A) Chemical structure of anle138b. (B) Principal anle138b conformers, considering all
possible different tautomeric forms of the pyrazole moiety and main torsion motifs, are shown together with their associated solvation free energies
in water (blue) and 1-octanol (green). (C) Torsion angle distributions of the bromophenylring and distances between bromine and nitrogen atoms
of the pyrazole ring collected over all production simulations with anle138b and peptide aggregates at room temperature.
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in a structure-dependent manner at nanomolar concentra-
tions.51,52 In vitro, anle138b suppressed the formation of
pathological aggregates and inhibited oligomer formation of the
prion protein from multiple tested strains,51 the tau protein,53

and α-synuclein,51,54 which is deposited in PD, and other
synucleinopathies. It was concluded that the inhibitory effect of
anle138b in vitro and in vivo can be attributed to the direct
modulation of toxic aggregate species at the oligomer
level.51,53,54 However, the low water solubility of anle138b
(concentrations smaller than 1 μM) precludes a character-
ization of its interaction with relevant oligomeric aggregation
states by high-resolution NMR spectroscopy.
Therefore, we utilize all-atom unbiased MD simulations to

determine how anle138b interacts with small oligomeric
aggregates of selected amyloidogenic decapeptides, namely,
peptide fragments from human tau,39,55−57 Aβ,26,58,59 human
islet amyloid polypeptide (hIAPP),60,61 and Sup35p.56,62,63

They are experimentally known to be highly aggregation prone
and are crucial constituents of β-structured aggregates formed
by their full-length precursor sequences. Our simulation results
detailed below provide an in-depth analysis of the principal
atomistic interactions that govern anle138b binding and the
modulation of peptide aggregate structural ensembles.

■ RESULTS
Molecular Geometry and Free Energy Differences of

Anle138b conformers. To determine the influence of
anle138b on the structure and dynamics of amyloidogenic
peptide self-assembly by atomistic MD simulations, we first
focused on the conformational preferences of the compound
itself (Figure 1A). We investigated the free energy differences
between eight principal anle138b conformers, taking into
account that the pyrazole moiety of anle138b can exist in two
tautomeric forms and considering all main torsion motifs of the
bromophenyl and the benzodioxol ring resulting from the two
rotatable bonds in the molecule (Figures 1B, S1 and Methods).
The solvation free energies for all conformers and tautomers
fall within the range of −43 to −46 kJ/mol in water and −93 to
−98 kJ/mol in 1-octanol (Figure 1B, Methods). Figure S1
depicts the results of a separate simulation set (replica exchange
simulations in vacuum, see Methods) from which the free
energy differences between each conformer per tautomeric
form were obtained. It shows that one tautomeric form
(conformers 1−4) appears to be strongly preferred in vacuum
over the other tautomeric form (conformers 5−8).
From a combination of all the above, we found that (a)

conformers 1−4 are more likely to be present in water than 5−
8 and (b) the free energy of conformers 1−4 is approximately
equal. Although the free energies for all four conformers per
tautomeric form are very similar and differ only by 1−2kT, the
initial molecule structure used for parametrization, highlighted
in red in Figure S1, affects the simulation outcome to a similar
extent of 1−2kT.
The analysis over all simulations at room temperature in the

present study shows that large torsion angle transitions in
anle138b are not sampled during the μs simulation time scale,
confirming the initial observations of stable, individual anle138b
conformers with a planar and rigid molecular geometry (Figure
1C). Because the initially selected anle138b conformers did not
interchange with each other, likely due to a high energy barrier
associated with them, we selected two representative
conformations for the simulations with the peptide aggregates,
namely, the anle138b “trans” (conformer 1) and the “cis”

(conformer 6), as illustrated in Figures 1B,C and S1. We based
our choice on their favorable relative free energy and the fact
that these anle138b conformers enfold a diverse set of
structural features (tautomeric form of the pyrazole moiety
and the torsion space of the bromophenyl ring).

Anle138b Diminishes Interpeptide Backbone Hydro-
gen Bonds and Alters the Aggregate Size Distribution.
Peptide aggregation simulations were started either from
randomly dispersed peptide conformations (RNDM setup) or
from experimentally determined β-sheet structures (β-STR
setup) to circumvent possible sampling problems of the
aggregated state and to test the impact of anle138b on β-
sheet rich aggregates (Figures 2A,B and S2). To mimic the

experimentally confirmed nanomolar solubility of the com-
pound51 and to avoid self-association, one anle138b molecule
per simulation box was used. Thus, for each of the chosen
decapeptide sequences from hTau, Aβ, hIAPP, and Sup35N,
the following sets of simulations per starting structure were run
(Figures 2B, S2; Table S1; and Methods): (1) with one
anle138b in “cis” conformation and (2) with one anle138b in
“trans” conformation (holo simulations), as well as (3) with no
anle138b molecule as a control (apo simulations). In total, over
300 multi-microsecond MD trajectories were generated with a
cumulative simulation time exceeding 1500 μs, using an all-
atom protein and small molecule force field with explicit
solvent molecules (see Methods, Table S1). The probability of
interpeptide backbone hydrogen bond formation for each of
the simulated setups and sequences was analyzed to assess the
aggregation extent. The first 2.5 μs of each simulation trajectory
were neglected to minimize the effect of the respective starting
structure.
We found a consistent, prominent reduction in the overall

amount of interpeptide backbone−backbone hydrogen bonds
in the holo simulations (with anle138b) compared to the apo
simulations without the compound (Figure 3). Especially, the
holo simulations starting from randomly dispersed peptide
conformations (RNDM setup) reveal a substantially higher
fraction of peptide chains with few or no intermolecular
hydrogen bonds. We also found that the aggregated state is
sampled to a smaller extent by 5% (β-STR setup) to up to 25%
(RNDM setup) compared to the apo trajectories, leading to an

Figure 2. Overview of simulation setup and sequences of simulated
peptides. (A) Primary sequence of amyloidogenic decapeptide
segments from aggregation prone regions of hTau40, Aβ, hIAPP
,and Sup35N. (B) Four principal sets of simulations carried out for
each sequence and aggregate size (schematic example shown for
dimeric simulations).
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increased fraction of monomeric peptides. Along these lines,
analogous trends are obtained for the dimeric, trimeric and
tetrameric hTau40 aggregates, as well as the dimer simulations
of Aβ14−23, hIAPP22−29 and the hydrophilic Sup35N7−16
(Figures 3 and S3).
Anle138b Impedes the Formation of β-Sheet Rich

Structures in hTau40, Aβ, hIAPP, and Sup35N Aggre-
gates. On par with the previously presented diminished
number of interpeptide backbone hydrogen bonds in the holo
simulations, we observe a significant reduction of β-sheet
structure and β-bridge elements as defined by the DSSP
algorithm.64 In the apo simulation systems with RNDM setup,
β-strand conformations are the most populated fraction of
secondary structure elements, apart from random coil. In the
presence of anle138b, the average β-structure for the
hTau40305−314 dimer (apo: 38 ± 7%/holo: 19 ± 7%), trimer
(37 ± 9%/30 ± 4%), and tetramer (21 ± 3%/15 ± 4%), as well
as for the Aβ14−23 (40 ± 6%/25 ± 9%) and the Sup35N7−16 (22
± 7%/4 ± 2%) dimer is decreased, whereas the abundance of
turn, coil and helix elements is increased (Figures 3 and S3).
The differences in average β-sheet structure content between
apo and holo simulations that started from the β-STR setup are
smaller, but are still significant for the hTau40, Aβ and Sup35N
aggregates: hTau40305−314 (apo: 50 ± 4%/holo: 33 ± 6%) and
Sup35N7−16 (27 ± 11%/16 ± 6%) dimers, hTau40305−314
trimer (42 ± 4%,40 ± 2%) and tetramer (48 ± 4%,43 ±

1%). The average β-structure content for the Aβ14−23 dimers
that started from the β-STR setup is only marginally different
for apo and holo simulations. For the hIAPP22−29 dimer, even in
the case of simulations starting from initially β-sheet rich
aggregate conformations, only a negligible amount of β-sheet
and β-bridge content is seen in apo and holo trajectories
(Figure 3C). The effect of anle138b on the sampling of the β-
sheet rich aggregate states therefore could not rigorously be
quantified. Interestingly, in contrast to all other sequences, the
hIAPP22−29 dimer simulations without anle138b show a high
fractional content of helical structures (RNDM setup: 18 ±
5%/β-STR setup: 27 ± 5%). The high propensity of helix
motifs is furthermore increased in the holo simulations of the
hIAPP22−29 dimer (38 ± 4%/34 ± 4%). No significant impact
of anle138b is seen on the secondary structure content of the
largely unstructured hTau40305−314 monomer (Figure S4). The
holo simulation ensemble, however, shows a moderate increase
in the number of intramolecular hydrogen bonds and a higher
population of compact structures.
We analyzed the conversions between disordered and

ordered oligomeric states for all apo and holo simulations
and determined the number of trajectories that sampled
ordered aggregates with a β-strand structure content >50%.
For a statistical error estimate, the Wald method65 to determine
the 95% confidence interval was used. The corresponding ratios
of ordering transitions are 0.43 ± 0.21 (9 out of 21 total apo

Figure 3. Effect of anle138b on amyloidogenic peptide aggregates. Probabilities of interpeptide backbone hydrogen bonds and the populations of
secondary structure elements reported for (A) hTau40 dimer, (B) Aβ, (C) hIAPP, and (D) Sup35N simulations with and without anle138b. Top
panel shows the results for the RNDM setup, bottom panel shows the results for the β-STR setup, and insets show the sampled aggregate size
distributions. Error bars indicate the standard deviation of the individual simulations from the average calculated over all trajectories.
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trajectories) and 0.25 ± 0.17 (6 out of 24 holo simulations) for
the dimer simulations starting from random, dispersed peptide
conformations. The β-STR setup simulations starting from
preassembled, extended β-sheet structures were first analyzed
regarding the transitions from the initially ordered toward
disordered oligomeric states with a low β-structure content
(<20%). We included an additional set of holo trajectories
spawned from stable β-sheet aggregates that formed during the
apo simulations with RNDM setup and are different from the
starting structures of the β-STR setup. Figure 4 shows that the

ratio of disordering transitions is very similar for apo (0.76 ±
0.18) and holo (0.65 ± 0.15) dimer simulations. However, the
fraction of trajectories that subsequently returns to aggregate
conformations with extensive β-strand structure is different
(apo: 0.44 ± 0.24/holo: 0.12 ± 0.12). Notably, the individual
simulation runs starting from crystallographic and spawned β-
sheet structures with antiparallel strand orientations (dark-red
and black colored lines in Figure 4) are more stable than the
ones with parallel strand orientations (mint green colored lines
in Figure 4). These conformations retain high levels of β-
structure over the course of the multi-microsecond simulation
time even in the presence of anle138b and thus contributing to
the overall high average β-structure content of β-STR setup
simulations.
In simulations of hTau40 trimers and tetramers, disordering

transitions are less likely to occur (apo: 0.17 ± 0.15/holo: 0.16
± 0.08), pointing to a much higher stability of multimeric
oligomers already from the trimer onward (Figure S3). The
time dependent traces of β-structure content, the diverging
populations of secondary structure elements, and the
probability distributions of interpeptide hydrogen bonds with

either setup indicate that the full structural equilibration of
higher order β-sheet rich oligomers may lie beyond the time
scales accessed in the current study (Figure S3). However, a
similar trend in terms of a reduced reordering probability in all
trajectories with anle138b is obtained (apo: 1.0 ± 0/holo: 0.36
± 0.25, Figure S3C).

Anle138b Introduces a Population Shift in the
Aggregated State Conformational Ensemble. To examine
the effect of anle138b in more detail with regard to the
conformational ensemble of oligomeric structures and their
dominant states, a Principal Component Analysis (PCA, see
Methods) was carried out. To compare the conformational
variance of oligomeric aggregate conformations in the presence
and absence of anle138b, the apo and holo simulation
ensembles were projected separately onto the same set of
eigenvectors. The eigenvectors were derived by calculating the
covariance matrix over all collected frames from the combined
sets (RNDM and β-STR setup) of apo and holo simulations for
each peptide sequence. To quantify the sampling differences,
similar conformational states according to the following
abundant principal aggregate features were merged into
“supra-states”: antiparallel or parallel, extended β-strands (ae,
pe), partially disordered antiparallel or parallel β-strands (ad,
pd), collapsed and disordered structures (cd), as well as
aggregates consisting of intramolecular hairpin structures (hp).
The overall most abundant structure motifs present in the

apo ensembles of dimeric hTau40 and Aβ aggregates are
extended, antiparallel β-strand conformations with multiple
different strand registries. This finding is supported by the
corresponding densely sampled states in the PCA projections
(regions colored orange and red in Figures 5A and 6A) and the
high abundance of ordered β-strands expressed in terms of the
collective variable CVβ−strand ≥ 0.5 (see Methods, Figures 5B
and 6B). A histogram analysis over the “supra-states” of hTau40
and Aβ dimer simulations starting from random, dispersed
peptide chain conformations further shows a predominantly
out-of-register packing for the observed antiparallel β-strands
(aeOR, Figures 5C and 6C). Sup35N peptide dimers
preferentially form partially disordered β-strands with anti-
parallel chain alignment (ad) and intramolecular hairpins (hp,
Figure S5C). Extended β-strands, with parallel fibril-like
orientations (pe), are the least populated state in all of the
apo dimer aggregate ensembles, what is consistent with the low
sampling densities of this particular conformation in the PCA
projections. Rather, partially disordered parallel β-structures
(pd) are prevalent for the hTau40, Aβ and Sup35N dimers.
The dimeric state of hIAPP22−29 is dominated by collapsed and
helical conformations as illustrated in Figure S6A. Ordered β-
structures appear transiently, but none of the dimeric
hIAPP22−29 conformations are stable beyond the tens of
nanoseconds time scale, in contrast to what is observed in
the simulation trajectories of the other three amyloidogenic
peptide sequences.
PCA projections and representative structures obtained after

clustering aggregate conformations reveal that the sponta-
neously sampled population of conformational states is
substantially affected by the presence of anle138b. For the
holo ensemble of hTau40305−314 (Figure 5A), Aβ14−23 (Figure
6A), Sup35N7−16 (Figure S5A), and hIAPP22−29 (Figure S6A)
dimer structures, we see a broad range of various degenerate
minima in the projections and less well-defined major
conformational states sampled, compared to the apo ensemble.
Judged by the PCA projections, apo and holo simulations cover

Figure 4. Conversions between ordered and disordered aggregation
states. Time dependent β-structure content shown as 500 ns block
average for simulations of hTau40, Aβ, hIAPP, and Sub35N dimers
started from extended β-sheet structures with and without anle138b.
Disorder transitions of aggregates throughout the trajectories are
highlighted by thick lines and brown colors. Red colored lines indicate
trajectories with a successful reordering event (β-structure content ≥
0.5) after an initial disordering.
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similar regions of the conformational space, but also exist in
distinct states not mutually present in apo and holo ensembles.
With few exceptions, also the conformational basins common
to both the apo and holo structure ensembles differ in their
relative sampling density. This difference is indicative of a
profound shift in the population of the conformational
ensemble induced by anle138b throughout all individual
substates, as well as collectively with regard to the lumped
“supra-states”. In comparison to the apo simulations, the
dimeric hTau40 and Aβ aggregates in the presence of the
inhibitor anle138b, ae conformations are depopulated and
notably of those structures with out-of-register β-strands (aeOR,
Figures 5C and 6C). Whereas for the Sup35N dimers,
especially the intramolecular hairpin conformations (hp) are
diminished from the holo ensemble (Figure S5C).
The overall stark depletion of the β-structured ae and hp

conformations raised the question whether they are destabilized
by anle138b in a particularly strong manner and rearrange
shortly after formation or if their formation is prevented at all
over the course of the simulations. Therefore, the sampling of
all identified conformational states in the apo and holo
ensembles throughout the aggregation process in terms of
RMSDs to the individual cluster center structures was analyzed

(see Methods). Figures 5D, 6D, S5D, and S6D confirm the
suppression of antiparallel β-strand and hairpin formations in
the simulations of spontaneous peptide aggregation with
anle138b (RNDM setup). This trend also reflects the overall
smaller fractions of fibril-like, extended β-strand packing in the
holo simulations. A concurrent upsurge of collapsed and
disordered peptide conformations in the holo aggregate
structure ensembles is detected without exception for
hTau40, Aβ, hIAPP, and Sup35N dimers. The analysis over
the individual chain conformations within the larger oligomers,
namely the hTau40305−314 trimers and tetramers, also shows a
higher fraction of disordered versus extended β-strands,
complementing the results of the dimeric state (see Supporting
Methods and Figure S7). Similarly to the trends observed for
the dimer, an overall higher relative sampling frequency of
partially disordered β-strands and completely unstructured
peptide conformations is found in the oligomers simulated in
the presence of anle138b (Figure S7). Whereas the populations
of extended antiparallel β-strands in the holo aggregate
ensembles are increased and fractions of pe and ae
conformations are more balanced between apo and holo
ensembles as compared to the dimeric state.

Figure 5. Conformational ensemble of dimeric hTau40 aggregates with and without anle138b. (A) PCA projections of the apo and holo hTau40
dimer simulations starting from random, dispersed structures are shown together with representative cluster center structures as identified by k-
means clustering. (B) Fraction of ordered β-strand conformations and (C) population frequency of conformational “supra-states”. (D) RMSD curves
as a function of conformational cluster for two intervals of simulation time (continuous lines t < 2.5 μs, broken lines t > 2.5 μs) indicate whether the
individual substates were sampled during the simulations.
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Anle138b Shows Specific Interactions with the
Peptide Backbone and Multiple Modes of Binding. The
contact probabilities of anle138b to peptide main chain and
side chain atoms were calculated in simulations of
hTau40305−314 (Figures 7 and S8), as well as Aβ14−23,
hIAPP20−29 and Sup35N7−16 (Figure S9) to better understand
the underlying interactions of anle138b with the oligomeric
aggregates.
The binding affinity of anle138b to the peptide main chain

and side chain heavy atoms is highly independent of the
peptide sequence. The residue-based renormalized contact
frequencies indicate a preferential binding to the central
aromatic and aliphatic residues of the different peptide
sequences (Figures 7A, S8A, and S9A): hTau40305−314,
Ile308/Tyr310; Aβ14−23, Phe19/Phe20; hIAPP20−29, Phe23/
Leu27; and Sup35N7−16, Tyr13. The renormalized contact
probability profile obtained from the hTau40305−314 simulations
displayed in Figure 7A also shows an increased specificity of
anle138b binding to the bulky, hydrophobic side chains
(Ile308/Tyr310) in the oligomeric aggregates compared to
the monomeric state.
The peptide side chain atoms show a rather uniform contact

probability across the different parts of anle138b’s chemical

structure, with the largest number of contacts being made to
the central pyrazole ring. With regard to the main peptide
chains, the nitrogen atoms of the pyrazole ring consistently
feature a significantly larger number of contacts compared to
the rest of the compound (Figures 7B, S8B and S9B). The
formation of favorable polar contacts between the pyrazole
nitrogen sites and the peptide backbone results in prominent
hydrogen bonding interactions and explains the larger contact
numbers.
The frequency of anle138b hydrogen bonds increases with

the oligomer size similarly to the above-described contact
probability of anle138b, but hydrogen bonds predominantly
form with the peptide backbone motif (Figures 7A and S8A).
Interestingly, even sequences with multiple polar side chain
groups competing for hydrogen bond formation establish more
frequently polar contacts between anle138b and the peptide
backbone (i.e., Sup35N7−16 and hIAPP20−29, Figure S9).
To obtain insight into the anle138b binding mechanism to

the ensemble of aggregates, the conformational space of
anle138b interacting with peptide oligomers was discretized.
The previously described contact patterns of anle138b to
oligomeric forms of peptide aggregates in terms of atomic
contact numbers and the presence of hydrogen bond

Figure 6. Conformational ensemble of dimeric Aβ aggregates with and without anle138b. (A) PCA projections of the apo and holo Aβ dimer
simulations starting from random, dispersed structures are shown together with representative cluster center structures as identified by k-means
clustering. (B) Fraction of ordered β-strand conformations and (C) population frequency of conformational “supra-states”. (D) RMSD curves as a
function of conformational cluster for two intervals of simulation time (continuous lines t < 2.5 μs, broken lines t > 2.5 μs) indicate whether the
individual substates were sampled during the simulations.
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interactions led us to devise a heuristic classification of five
mutually exclusive anle138b binding modes. These modes are
detailed in Figure 8A and are defined in the following way: (1)
“unbound”, no contacts; 2) “partially bound”, fewer than half of
the anle138b atoms in contact with peptide heavy atoms,
mostly describing transient binding events; (3) “docked”, half
or more of the anle138b atoms in contact with peptide heavy
atoms, no hydrogen bond interactions to the backbone atoms;
(4) “bound”, at least one hydrogen bond between anle138b and
peptide backbone or side chain atoms; (5) “blocking”, more
than 70% of the anle138b atoms in contact with peptide heavy
atoms, at least two hydrogen bonds between anle138b and
peptide backbone.
A summary of the mean-first passage time and mean

residence time of anle138b in one of the respective binding
modes for all simulation systems is shown in Figure S10. The
anle138b binding events occur on the hundreds of pico- to
nanosecond time scale and anle138b binding with multiple
hydrogen bonds takes the longest time to be sampled (≈100
ns). The lifetime of the overall short-lived binding poses
increases with the aggregate size because of the growing
number of potentially interacting peptides. Accordingly, the
shortest mean residence times of anle138b modes are present
in the simulations of the monomeric hTau40 peptide which
also show the highest frequency of unbinding events and the
largest fraction of unbound or partially bound anle138b (Figure
S10 and 8B).
The interactions of anle138b with peptide aggregates result

in a fast desolvation and burial of the molecule, as illustrated by
time dependent anle138b solvation traces from hTau40
simulations (Figure 8C). The number of water molecules in
the anle138b hydration shell drops significantly upon further
association with the aggregate surface. Nevertheless, the

compound maintains a tendency to unbind and exchange
with the bulk solvent. We also found a distinct correlation
between the desolvation of anle138b’s pyrazole ring and the
overall loss of solvating water molecules. The number of
surrounding waters around anle138b correlates with the above-
described binding modes in the following descending order
from high to low: partial or transient binding, docked, bound to
and blocking the backbone of a peptide chain (Figure 8C). The
loss of solvation around the small molecule is even more
pronounced in simulations of larger hTau40 aggregates (trimer
and tetramer) and anle138b was found buried deep within
pockets and clefts of the aggregates. Likewise, the insertion and
association of anle138b with the oligomeric aggregates results
in a substantial reduction of hydrophobic solvent accessible
surface area compared to the apo ensembles in all studied
peptide aggregate systems.
Moreover, anle138b exhibits a structure dependent binding

as the differing binding mode probabilities for RNDM and β-
STR simulation systems summarized in Figure 8B show. In fact,
all preassembled β-sheet models that show a high structural
stability throughout the course of the simulations
(hTau40305−314 dimer to tetramer and Aβ dimer) are found
with a lower abundance along with a slower mean-first passage
time of anle138b binding modes involving peptide backbone
hydrogen bond interactions (Figure S10).
To investigate the binding of anle138b to amyloid cross-β,

fibril-like structures (as opposed to metastable, nonfibrillar
oligomers described so far), simulations of tetra- and octameric
β-sheet model structures with positional restraints imposed on
their backbone atoms were set up (Figure S11).
Simulations of these highly ordered, fibril-like structural

arrangements yield an overall higher fraction of “docked”
anle138b molecules compared to the simulations where the

Figure 7. Contact probability and hydrogen bonding interaction of anle138b in hTau40 monomer to tetramer simulations starting from random
conformations. (A) Anle138b contact to peptide heavy atoms and hydrogen bond probability are shown as a function of residue index
(renormalized) and aggregate size (absolute). (B) Contact frequency of peptide heavy atoms (main and side chain) with anle138b atoms mapped
onto chemical structure of the ’trans’ conformer.
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peptide chains were free to rearrange as shown by the binding
mode probability (Figures S11 and 8B). The “docked” binding
mode is almost exclusively found in simulations of nonfibrillar
hTau40 structure models based on PDB entry 4E0M with
antiparallel strands, featuring an extended hydrophobic patch
on one side of the β-sheet to which anle138b binds in an
isotropic fashion. In contrast, anle138b binds to all fibrillar
structures with single or double layer parallel in-register β-
strands in much more defined poses. The representative
structures in Figure S11 show the molecule being inserted into
the hydrophobic side chain grooves and aligned parallel to the
fibril axis. Anle138b binds to single and double layer β-sheets of
the same principal cross-β structure in a different fashion;
namely, “docked” and “partially bound” modes and virtually no
hydrogen bonding to the peptide backbone in case of the
unpaired single layer β-sheets occur. Simulations of paired β-
sheet layers with a steric zipper type interface show an

increased fraction of ’bound’ and ’blocking’ modes. Here,
anle138b occludes and caps the respective solvent-exposed tips
of the fibrillar structure.

The Inhibitory Effect of Anle138b Is Directed toward
the Disordered Structure Ensemble. To examine structure
dependent binding characteristics of anle138b, we introduced
an enrichment factor (EF) analysis. The EF of the individual
binding modes was computed for the aggregate conformations
as a function of β-sheet content intervals as follows:

=

×

EF
no. of mode structures per interval

no. of total mode structures
total no. of peptide conformations

no. of peptide conformations per interval

mode
interval

An EFmode
interval value larger than 1 indicates that a given anle138b

mode at the defined β-sheet interval is found more frequently

Figure 8. Characterization and probability of anle138b binding modes. (A) Representative simulation structures and characterization of main
anle138b binding modes. (B) Population of binding modes as a function of the simulation system (aggregate size, starting peptide conformation,
sequence). (C) Number of hydration water molecules around the anle138b molecule as a function of simulation time (hTau40305−314, monomer to
tetramer). Light blue areas illustrate the fluctuation of solvent molecules around the anle138b compound in the bulk without any peptides present.
Color bars show the relation of small molecule hydration and occurrence of a certain binding mode (bar length = ±1σ).
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than the ensemble average. Figure 9A shows the binding mode
populations across the different conformational states in the
aggregate structure ensembles. Anle138b’s first as well as the
total number of binding events involving the “bound” and
“blocking” mode occur overall preferentially to oligomer
conformations of the disordered and collapsed structure
ensemble (β-structure content below 20%). The EF, i.e., the
relative probability for the “bound” and “blocking” modes is the
smallest for the β-sheet rich, ordered oligomeric states (β-
structure content above 60%). We thus found a preferential
occurrence of anle138b with hydrogen bonding interactions
(“bound” and “blocking” modes) to aggregate structures that
exhibit a low β-structure content and small fraction of extended
fibril-like β-strand conformations (Figure 9A). The outcome of
the EF analysis is invariant across sequence space and the
probed aggregate size despite the lower compound-to-peptide
ratio in trimer and tetramer simulations.
As illustrated by the representative structures in Figure 9B,

the rigid, planar geometry and hydrogen bonding capability of
the small molecule often results in the partial or complete
wedging between aggregate chains, leading to the break up of
intermolecular peptide backbone interactions and to the
disruption of ordered β-strand arrays. One can further assess
that oligomers bound to anle138b via the previously

characterized “bound” and “blocking” modes adopt wrapped
up, coiled and collapsed structures. In contrast, extended β-
structured oligomers (if sampled) preferentially feature
“docked” and “transient” anle138b binding modes. In these
instances, the compound is often well aligned with the β-
strands and attaches to the molecular surface of peptide side
chain groups rather than to the peptide backbone.

Control Experiment with Inactive Anle234b Verifies
Anle138b’s Mode of Action. To validate the hypothesized
anle138b mode of action, we simulated the inactive compound
anle234b51 together with the hTau40 dimer system. Anle234b
is a structural isomer of anle138b and the two molecules differ
only in the position of the bromine substitution on the phenyl
ring (ortho- for anle234b instead of meta- for anle138b). In
contrast to the anle138b simulations, anle234b undergoes
torsional motion of the bromophenyl ring, resulting in a stable
conformation with the bromine atom in ortho-position in close
proximity to the nitrogen atoms of the pyrazole moiety (Figure
10A).
The steric hindrance imposed by the bulky bromine group

leads to a “torsional inactivation” of anle234b impeding the
interactions of the bromophenyl and the pyrazole ring with the
peptide backbone. The significantly reduced contact probability
of anle234b to the peptide backbone atoms leads to a reduced

Figure 9. Structure dependent binding characteristics of anle138b. (A) The enrichment factor of anle138b binding events per mode as a function of
β-structure content is shown as cumulative distributions for all simulated sequences and aggregate sizes in box plots. Box and whisker indicate 1σ and
2σ of the distribution widths, respectively. (B) Representative structures of peptide aggregates with anle138b in docked, bound, and blocking modes.
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hydrogen bonding capability compared to anle138b, whereas
the side chain contact probability based on the analysis of
nonspecific and mainly hydrophobic contacts is very similar for
both investigated molecules (Figure 10B). Interestingly, the
average β-structure content levels of apo and anle234b
simulations are comparable and are both significantly higher
compared to the respective simulations with anle138b (Figure
10C). We also found a larger number of interpeptide backbone
hydrogen bonds and a larger fraction of dimeric peptide chains
compared to the anle138b simulations (anle138b/anle234b,
RNDM setup: 77 ± 8%/95 ± 2%, β-STR setup: 87 ± 3%/94 ±
2%), suggesting little to no potency of anle234b to inhibit β-
oligomer formation in the simulations.

■ DISCUSSION
Despite considerable progress in uncovering the etiology of
pathogenic aggregates in amyloid diseases, the molecular
footprints underlying their formation and potential inhibition
mechanisms remain largely in the dark.15 Anle138b is a newly
discovered synthetic compound which has emerged as a potent
inhibitor of toxic oligomer formation.51,53,54 Yet, structural
information regarding anle138b’s conformational preferences
and its specific interactions with self-assembled amyloid
aggregates is limited. The main goal of the present study was

therefore to understand the mode of action and the impact of
anle138b on the conformational changes during the primary
nucleation steps of small oligomeric aggregates formed by
fragments of hTau, Aβ, hIAPP, and Sup35 prion protein.
As observed in our all-atom MD simulations, the small

aromatic molecule anle138b50,51,53 is a planar system without
rotations around the bonds connecting the central pyrazole ring
with the 3- and 5-aryl moieties. Previous gas phase IR
experiments66 and solution-state NMR spectroscopy67 inves-
tigating the smaller 3-methyl-pyrazole and a class of amino-
pyrazole analogues68,69 in complex with model peptides
demonstrated that the pyrazole heterocycle is able to form
bidentate hydrogen bond contacts to the carbonyl oxygens and
amide hydrogens of the peptide backbone. Similarly, we found
that the pyrazole of anle138b prevalently established transient
intermolecular hydrogen bonds to the peptide backbone. The
importance of the pyrazole motif for the high activity of the
compound is illustrated by variations to the molecular structure
as found for other members of the focused diphenyl-pyrazole
compound library; anle138b was eventually selected from ref
51. Replacing the pyrazole core group of anle138b with
imidazole (sery345) or isoxazole (sery338), thereby altering the
hydrogen bonding characteristics, was found to diminish the
antiaggregation effect of these compounds.51 Remarkably, it
was previously shown that also a minor change in the bromine
substitution pattern on the 5-phenyl ring from meta-
(anle138b) to ortho-position (anle234b) renders the diphen-
yl-pyrazole compound inactive.51 Our analysis reveals that the
rotation of the bromophenyl ring in anle234b is less restricted
compared to anle138b and results in a stable conformer that
imposes steric hindrance on the pyrazole ring. Therefore,
anle234b is apparently not able to recognize the peptide
backbone to the same extent as anle138b.
Anle138b has been shown to reduce the abundance of

neuropathological oligomers formed by the prion protein,51,
the tau protein,53 and α-synuclein.51,54 On the molecular level,
our simulations support the notion that the efficacy of anle138b
is neither specific to the sequence nor a certain amino acid
composition due to the high affinity of anle138b toward the
misfolded states of the aggregation-prone proteins, therefore
suggesting a universal inhibition effect against any amyloido-
genic sequence. Our simulations show that anle138b readily
attaches to hydrophobic parts of the oligomeric aggregate
surface and especially the aromatic residues, as universally
present in the investigated sequences. The present data on
solvation free energies moreover demonstrate the strong
preference of anle138b for apolar interactions, contributing to
the stable association of the compound to the peptides, as well
as the successful competition with peptide−peptide self-
assembly.19,70 As anle138b reversibly buries itself into the
oligomeric aggregate structures, hydrogen bonding interactions
between the compound and the peptide backbone are
reinforced. Interestingly, a synergistic effect of hydrogen
bonds and hydrophobic contacts is also reported for previously
designed aminopyrazole β-sheet ligands,69,71 which share
structural resemblance to anle138b investigated here. Along
these lines, the fraction of anle138b molecules in our
simulations with direct interactions to the peptide backbone
is found to be the smallest for monomeric peptides and
increases with oligomer size, i.e., the extent of potentially
exposed hydrophobic groups. These observations are consistent
with previous experimental evidence from in vitro fluorescence
spectroscopy of anle138b indicating high affinity binding to

Figure 10. Inactive compound anle234b does not affect aggregation of
hTau40 peptides. (A) Anle234b conformations over all hTau40 dimer
simulations carried out are shown as torsional distributions of
bromophenyl ring and distances between bromine and nitrogen
atoms of pyrazole moiety. (B) Contact frequency of anle138b/234b to
peptide heavy atoms mapped onto the chemical structure and
comparison of anle138b and anle234b hydrogen bond probability as
a function of peptide residue index. (C) Intermolecular main chain
hydrogen bond and aggregate size distributions, as well as (D)
ensemble-averaged populations of secondary structure elements are
shown for simulations without as well as with the anle138b and
anle234b compounds.
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aggregates of α-synuclein and no specific interactions to the
monomeric form.52 In addition, anle138b was found to be
shielded from the surrounding water molecules despite the fact
that a particular tight binding to oligomeric forms was not
observed.52

It is worth noting that the observed altering effect of
anle138b on the structural transitions and population of the
conformational ensembles in our simulations is present even at
the high 10 mM peptide concentration, which strongly favors
aggregation through the frequent encounter of the peptide
molecules. It is reasonable to assume that the inhibitory effect is
also affected by the compound-to-peptide-chain molar ratio.
The number was fixed to one anle138b molecule per simulation
box throughout the present study and resulted in a lower
effective compound concentration for the higher order
oligomeric states. We therefore expect the lower effective
concentration of anle138b to explain the less significant
differences between the apo and holo ensemble of the trimeric
and tetrameric aggregates in terms of secondary structure and
sampling of conformational states compared to the dimeric
state.
The simulation ensembles reported here show dominant

oligomer conformations that are consistent with the crystal
structures of short model peptides26,72−74 and findings from
FTIR measurements of full-length systems,21,24,60 concerning
the following principal features: (a) Observation of multiple
distinct strand-to-strand and sheet-to-sheet packings that are
different from the mainly parallel in-register β-sheet of the
fibrillar state;72,75 (b) the oligomeric species are partially
structured and less compact compared to the highly organized
amyloid fibrils;21,75 (c) structural studies of several amyloido-
genic sequences; such as the Aβ peptide,26,58,73,75,76 tau,72

IAPP,74,77 or α-synuclein;21,78 report antiparallel β-sheet
conformations as a prominent hallmark of early oligomeric
aggregates;11 (d) the prevalently observed out-of-register β-
sheets are a common structural motif in amyloid aggre-
gates.27,58,73,74,77

Over the course of our multi-microsecond simulations, we
observed partially stable oligomers repeatedly transitioning
between disordered aggregation states and ordered structures
with a high fraction of antiparallel β-sheet motifs. These results
are in line with previous atomistic simulations of peptide
dimers32,35,39,47 and higher-order assemblies33−35,79,80 that
predict amyloid-like peptide aggregate structures with anti-
parallel β-sheet content to be stable also in a noncrystalline
environment. In addition, computational33−35,81−83 and ex-
perimental20,22 work characterizes prenucleated, small
oligomers as metastable due to the small free energy barriers
between the different conformational states. A kinetic control of
the self-assembly reaction therefore could give rise to early
aggregate intermediates rich in antiparallel β-strand struc-
ture.20,22,34,82,83

For the present work, we choose the AMBER99SB*-
ILDN84,85 force field with solvent molecules explicitly
represented by the TIP3P water model86 for all simulations.
This modified version of AMBER99SB87 was optimized toward
a balanced sampling of secondary structure elements and shows
improved performance in folding simulations and better
agreement with experimental data compared to older
generations of force fields.88 In a previous study,34 we critically
assessed the accuracy with which nonpolarizable MD force
fields can capture the heterogeneous conformational states of
peptide aggregation. Apart from the required extensive

sampling, the comparison between different state-of-the-art
force field variants revealed qualitative agreement between the
structural properties of the aggregates and the global features of
the self-assembly process. The AMBER99SB*-ILDN force field
was shown to be sufficiently accurate to distinguish between
aggregation-prone and nonaggregating sequences, without a
particular bias toward the aggregated state and able to sample
diverse conformations consistent with experimental structures
of peptide aggregates as also demonstrated by others.89

So far, the link between the cytotoxic and the specific
conformational properties of oligomeric aggregates has not
been unequivocally established and the putative distribution of
soluble species that mediate synaptic toxicity during amyloido-
genic aggregation reportedly involves structures as small as
dimers, trimers, but also larger multimers.15,19,20,22,89 However,
in recent years, several studies assert that the β-sheet geometry
makeup of toxic oligomers is distinct from the cross-β structure
of amyloid fibrils.9,20,21,27,75,76 Collectively, a variety of
techniques with high structural resolution revealed out-of-
register antiparallel β-strands packed together in cylindri-
cal,21,25,27 twisted,89 or paired arrays,72,73 as well as oligomers
with larger barrel-like topology28,90 or quaternary structures
composed of nested and sheared β-hairpins.27,76 In addition,
the recognition of nonfibrillar and toxic species by
conformation sensitive antibodies (A11)9,91 suggests a generic
molecular basis eventually shared by several different amyloid
proteins independent of primary sequence.9,63 Therefore, these
models could serve as a template for amyloid pores or channel-
like structures commonly associated with the lipid membrane
disruption and oligomer-induced toxicity.5,9,27,54,89

The present results show that substoichiometric concen-
trations of anle138b considerably hindered the spontaneous
formation of ordered oligomers with an extended β-structure,
although a complete prevention of aggregation was not found.
Rather, a profound population shift in the oligomeric structure
ensemble was observed, suggesting that early intermediates
along the oligomerization pathway will be arrested in
disordered and collapsed aggregation states or incapacitated
to convert to β-sheet rich conformations once direct interaction
with anle138b occurs. In addition, the sampling of antiparallel
and in particular out-of-register β-strand conformations
compatible with the structure of potentially toxic oligomers
was inhibited compared to the simulations without compound.
Anle138b did not directly divert oligomers with highly ordered,
stable β-strands toward disordered conformations, however,
once they transiently exchanged with the disordered structure
ensemble, a return to ordered β-sheet rich conformations was
impeded by anle138b in a majority of the simulations. The
examined binding dynamics clearly show that interactions with
peptide backbones in partially disordered and nonfibrillar
oligomers were longer lived and faster accessible for anle138b.
The compound was found to prominently wedge in between
the peptide chains of these fluctuating aggregate structures with
low nematic order, but without assuming a single well-defined
binding pose. As a result of direct peptide-pyrazole interactions,
a loss in interpeptide hydrogen bonds was observed in the
simulations. Interestingly, this binding mode is different from
the complementarity binding and capping of ordered β-sheet
structures reported for β-sheet ligands68,69,71 and peptide based
β-sheet breaker constructs.30,72,92−94 In contrast to all the other
investigated sequences, the hIAPP simulations revealed a
predominantly α-helical dimer. Our findings, however, are in
agreement with experimental evidence and a previously
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proposed mechanism suggesting a helical intermediate on-
pathway to fibril formation.95 Moreover, the hIAPP simulations
with anle138b demonstrated the ability of the compound to
also destabilize oligomeric aggregates with mainly helical
secondary structure by perturbing the balance between inter-
and intramolecular hydrogen bonding.
Finally, the aforementioned converging lines of experimental

evidence substantiate that low order oligomeric peptide species
account for cytotoxic effects in several devastating neuro-
degenerative diseases.6,7,9,10,12,23,63 However, that does not
exclude the relevance of other types of toxic aggregates,22,74,77

in part due to the highly polymorphic nature of amyloid
intermediates and their aggregation end-states.7,8 The presence
of multiple diverse and interdependent aggregation states in
turn may also suggest that small molecule inhibitors interact in
different ways with them.48,96 Our simulations of larger and
highly ordered β-sheet filament arrangements show an
increased burial of anle138b in side chain grooves and cavities
at the expense of anle138b conformations with direct polar
interactions to peptide backbones, in contrast to the frequent
occurrence of such binding modes in the simulations of the
partially disordered and nonfibrillar oligomers. Moreover, we
found that anle138b hydrogen bond interactions to the cross-β
steric zipper motif are preferred over those with extended open
edge β-strands of unpaired, single β-sheet filaments. These
findings prompt a number of questions regarding a potential
multimodal interaction mechanism of anle138b that warrant
further investigation into the specifics of the aggregation
kinetics:96 Do fibril tips and open edge strands of double layer
β-sheets constitute a viable interaction site for anle138b as well?
Is anle138b therefore potentially able to interfere with fibril
growth and elongation? Does anle138b bind to the fibril surface
such that secondary nucleation, which is a proposed important
pathway for the catalysis and release of toxic oligomeric
species,96,97 is suppressed? Does anle138b prevent fibril
fragmentation as proposed for compounds such as poly-
thiophenes98 and orange G99 that bind and apparently stabilize
fibrils and ordered protein aggregates?

■ CONCLUSION
We studied the molecular mode of action for the small
molecule inhibitor anle138b by means of all-atom MD
simulations. Our work provides insight into the previously
unknown anle138b binding mechanism to small oligomers and
its ability to directly modulate these structures during the
process of peptide aggregate formation. In summary, we
conclude the following about the molecular events that underlie
the β-sheet inhibition mechanism of anle138b: The binding
characteristics of anle138b are largely invariant to changes in
the peptide sequence but closely intertwined with the particular
structural template the compound interacts with. The preferred
modes of interaction with β-sheet rich fibrillar oligomers are
mainly directed toward hydrophobic patches on the surface of
the aggregates, whereas anle138b interactions with disordered
peptide aggregates involve the canonical peptide backbone
structure. The substantial desolvation of the small molecule
upon binding appears to be crucial to establish stable hydrogen
bond interactions to peptide backbones within the aggregates.
Moreover, our findings on the molecular geometry and
concomitant effects on intermolecular interactions for the
inactive compound anle234b underscore and corroborate the
specificity of anle138b’s mode of inhibition directed toward
oligomers formed by aggregation-prone peptides. From the

above presented results we infer that anle138b is able to
significantly reduce the amount of intermolecular hydrogen
bonding. Thereby, anle138b blocks the path toward extended
β-strands already at the level of the dimer and furthermore
obstructs the formation of fibril-like structure elements in
higher order oligomers. Altogether the atomistic description of
the anle138b binding process offers a compelling rationale for
the modulation of oligomeric structures as shown by
experiments. We thus expect that the detailed information on
inhibition of oligomer aggregate formation by the small
molecule anle138b will contribute to and will advance the
ongoing efforts of rational drug development.

■ METHODS
Simulation Protocol. The GROMACS simulation software

package (version 4.6.7)100,101 was used to set up, carry out, and
analyze the MD simulations. The particle-mesh-Ewald (PME)102,103

method was used to treat long-ranged electrostatic interactions at
every step with a grid spacing of 0.1 nm, and the relative tolerance at
the cutoff was set to 10−6. Periodic boundary conditions were applied
to the simulation box.

MD Simulations. After system preparation, an energy minimiza-
tion using the steepest descent algorithm was performed (1000 steps).
Subsequently, a 10 ps run with position restraints on the protein
backbone atoms was carried out to equilibrate the system. The
Berendsen barostat104 was used to keep the pressure constant (1 bar).
The velocity-rescaling105 algorithm was applied to couple the system
to an external heat bath with a temperature of 300 K using a time
constant of τ = 0.1 ps. Initial velocities were taken according to the
Maxwell−Boltzmann distribution at 300 K. For production runs, the
pressure coupling scheme of Parrinello−Rahman106 was used to keep
the system at a pressure of 1 bar (τ = 2.5 ps). MD simulations with
and without small molecule were performed employing the
AMBER99SB*-ILDN84,85,87 force field together with the TIP3P
water model.86 Bonds between all atoms in protein and ligand were
constrained using the P-LINCS107 algorithm. Water molecules were
constrained using SETTLE.108 Hydrogen atoms were converted to
virtual sites,109 and the integration time step was set to 4 fs.
Simulations were performed with the native GPU accelerated version
4.6 of the GROMACS software package.101 A nonbonded Verlet
scheme with cutoff for the van der Waals and electrostatic interactions
together with a buffered pair-list was utilized. The cutoffs were set to
1.0 nm. The neighbor lists for nonbonded interactions were updated
every 40 steps.

Replica Exchange Simulations. The relative free energies of the
anle138b conformers 1−4 (first tautomer) and 5−8 (second
tautomer) in gas phase were estimated from the conformation
populations sampled in temperature replica exchange molecular
dynamics (REMD) simulations. In total, eight independent REMD
simulations were performed, i.e., a topology of each conformer was
used in one REMD simulation. The topologies of the conformers
differ in the partial charge assignment only.

The temperature ladder of 8 values ranging from 300 to 1000 K was
constructed using the approach described in ref 110. Since the REMD
simulations were performed in vacuum, a stochastic dynamics
integrator with the friction constant of 0.5 ps−1 was used. Infinite
cutoff values were set for the nonbonded interactions. Each simulation
was performed for 100 ns with the integration time-step of 2 fs.
Finally, the population densities were extracted from the lowest
temperature trajectory.

Free Energy Difference Between Anle138b Tautomers. To
estimate the free energy difference between the tautomer pairs
(conformers 1−5, 2−6, 3−7, and 4−8), we performed alchemical free
energy calculations based on the nonequilibrium molecular dynamics
simulations. First, hybrid structures and topologies for the ligands were
built such that the physical end-states of an alchemical transition
would represent one tautomer only. For that we used an in-house set
of tools based on the pmx111 library. For every tautomer pair, we
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performed 10 independent 10 ns equilibrium simulations in vacuum
for both tautomers separately. Subsequently, from each equilibrium
simulation the first 2 ns were discarded and from the rest of the
trajectory 80 frames were extracted equidistantly in time. The obtained
snapshots were used to initiate nonequilibrium 20 ps alchemical
transitions from the state A to B and vice versa (the states A and B
represent the tautomers). The simulation parameters were the same as
used for the REMD runs. For the alchemical transitions the
nonbonded interactions were soft-cored.112 The work values required
for the transitions to take place were collected and used to estimate the
free energy difference between the tautomers based on the Crooks
Fluctuation Theorem113 utilizing the maximum likelihood estima-
tor.114

The procedure described above allowed calculating the free energy
differences between the tautomers. However, the alchemical approach
required replacing hydrogen atoms with the dummy particles during
the transition from one tautomeric state to another. While the
dummies were not felt by the rest of the system via nonbonded
interactions, these particles were nevertheless bound to the molecule
and their contribution to the free energy difference needed to be
accounted for. To quantify this contribution, we disabled all the
bonded interactions for the dummy atoms and calculated the potential
energy of the molecule for every snapshot extracted from the
equilibrium simulations. The same procedure was repeated without
disabling the bonded dummy atom interactions. The calculated
potential energy values were used to evaluate the change in free energy
due to the dummy atom addition by means of the Zwanzig’s
Perturbation formula.115

Anle138b Solvation Free Energy Calculations in Water. The
solvation free energy was calculated for every tautomer and every
anle138b conformer. The nonequilibrium free energy calculation
protocol, as described above, was employed. For the simulations we
utilized Gromacs functionality of decoupling a ligand from its
environment, at the same time retaining the intramolecular
interactions. Most of the simulation parameters were identical to
those used in the peptide simulations, except the following: for the
equilibration runs a stochastic dynamics integrator with the friction
constant of 0.5 ps−1 was used. The integration time step was set to 2 fs
and the dispersion correction for energy and pressure was applied. The
alchemical transitions in the case of solvation free energy calculations
were performed in 50 ps using a leapfrog integrator with the velocity
rescaling thermostat (time constant of 0.1 ps). During the alchemical
transitions soft-coring was applied to the nonbonded interactions.
Anle138b Solvation Free Energy Calculations in 1-Octanol.

The starting structure and force field parameters for 1-octanol were
obtained from the virtual chemistry library.116 GAFF based parameters
for 1-octanol were used. Prior to the free energy calculations, the
simulation system was equilibrated in several stages. First, anle138b
conformer 1 was placed in the box with 353 1-octanol molecules. An
equilibrium simulation at 320 K was performed for 100 ns. Afterward,
anle138b molecule was removed from the box and the pure 1-octanol
box was further equilibrated for 100 ns at 320 K temperature. The final
configuration of this simulation was used to initiate calculations of
solvation free energies of the anle138b conformers following the same
procedure as for the hydration free energies. The simulation
parameters were the same as for the hydration free energy calculations,
except for the higher temperature of 320 K, equilibrium simulation
length (50 ns) and longer alchemical transitions (200 ps).
Analysis Protocol. From the individual simulation trajectories,

samples were collected every 100 ps and used throughout subsequent
analyses. After pooling all trajectories of each peptide sequence, a
pairwise contact analysis was carried out to identify the individual
oligomer sizes, containing two to four chains. Peptides that shared an
interchain contact of the main chain atoms within a distance of 0.45
nm were considered to be part the same aggregate.
Principal Component Analysis and Conformational Cluster-

ing of Aggregate Structures. A principal component analysis
(PCA)117 was carried out on the main chain atomic coordinates of the
dimeric aggregation state for each sequence. Prior to the construction
and diagonalization of the covariance matrix of atomic displacements,

conformations from all trajectories (in the presence and absence of
anle138b) were concatenated and subsequently superimposed using
the variance minimization method.118 The corresponding first and
second eigenvectors used for the projections of the individual
conformational ensembles were derived by the construction and
diagonalization of the covariance matrix of atomic displacements. To
obtain a representative structural subensemble, a conformational
clustering was performed on the projected set of structures using the
k-means Hartigan−Wong algorithm119 implemented in the statistical
software package R.120 Cluster centers were selected according to the
global k-means algorithm.121 Structures with the smallest root-mean-
square deviation (RMSD) to the geometrical centers of the clusters
were selected as representatives. To identify dominant substates within
each conformational cluster obtained by k-means clustering, an
additional cluster analysis based on the Daura algorithm122 was
performed. After evaluating the pairwise RMSD of the peptide main
chain atoms of all aggregate conformations within a given pool of
structures, those structures with RMSD values smaller than 0.15 nm
were grouped into a common substate. The consecutive clustering
approach allowed a fine-grained analysis of the conformational space,
where the results of the k-means clustering were used to calculate the
population frequency among the various conformational states. The
subsequent clustering into substates using the Daura algorithm
permitted to assess the dynamical sampling of each k-means cluster.
The total numbers of conformational clusters obtained for the
simulations of dimeric aggregates were as follows (k-means/minimum
RMSD neighbor substates): hTau40305−314, (24/73); Aβ14−23, (25/
83); hIAPP20−29, (21/138); Sup35N7−16, (22/120).
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